Power Quality Issues in UPS

by A.D.Thirumoorthy Member,APQI Coimbatore INDIA adtmoorthy@gmail.com

•	HIGHLIGHTS OF POWER SECTOR									
	Installed Generation Capacity (As on 31-07-12)									
All Thermal Nuclear H						Hydro	RES@	Grand		
	India	Coal	Gas	Diesel	Total		Renewable	(MNRE)	Total	
	MW	117283.38	18903.05	1199.75	137386,18	4780.00	39291.40	24998.46	206456.04	
(%age	56.8	9.2	0.6	66,5	2.3	19.0	12.1	100.0	
Γ	@ Based on data as on 30-06-2012.									

Indian Power Sector

Power supply position 2012-13 July 2012*

Region	Energy (MU)	Deficit	Peak Demand	Deficit
	Requirement	%	(MW)	%
Northern	29,580	-11.3	41,659	-8.5
Western	22,285	-4.4	36,520	-3.6
Southern	23,000	-12.5	34,607	-13.2
Eastern	9,595	-5,3	15,248	-6.2
North Eastern	1,044	-6.9	1,946	-9.5
All India	85,504	-9.1	129,980	-8.1

Power Quality (PQ) problemsclassic definitions

Impulses/Transient: High magnitude for extremely short duration.

Sag: A momentary voltage dip last for a few seconds.

Swell: A momentary voltage rise which last for a few seconds

Over Voltage: A steady state voltage rise last for SEVERAL seconds

Under Voltage: A steady state voltage dip last for SEVERAL seconds

Interruption: A complete loss of voltage for a few seconds to several hours

Flicker: A perceptible change in lamp output due to a sudden change in voltage

Harmonics: The non-fundamental frequency components of a distorted power frequency waveform.

Transients classification

Transients classification

Transient During Charging a unloaded Transformer

Transient when Transformer switched off

Transient when Transformer switched off

Transient due Tripping of Breaker due to inrush current

Transient due Tripping of Breaker due to inrush current

Name	St	amples	Àvg	Min	Max	Units
4Cycles	V1	1024	-0.770	-695.400	79.600	V
4Cycles	V2	1024	0.077	-276.800	101.600	ע כ
4Cycles	٧3	1024	-0.142	-95.600	299.600	V V
4Cycles	I1	1024	0.000	0.000	0.000	рà
4Cycles	I2	1024	0.000	0.000	0.000	рÅ
4Cycles	I3	1024	0.000	0.000	0.000	рÅ
4Cycles	V1	1024	0.193	-80.900	10.900	V
4Cycles	V2	1024	-1.121	-150.000	19.200	V
4Cycles	٧3	1024	0.184	-12.500	65.000	V
4Cycles	I1	1024	0.000	0.000	0.000	p Å
4Cycles	I2	1024	0.000	0.000	0.000	p À
4Cycles	I3	1024	0.000	0.000	0.000	p À

Transient due to Capacitor Switching

Transient Event

Magnitude of Transient

On Resumption of Supply

Magnitude

Severe Transient

Event #19096 at 08/11/2010 13:38:24.746 AV Mult Z Cr

IPeak 251.8 195.6 167.6 0.1865

0.1865

Case Study on UPS

Power & Energy							
	FULL	٩	0:00:0	9	∞- C=		
	L1			T	otal		
k₩	0.33				0.33		
KVH	0.70				0.70		
KVHK	§ 0.62			Ę	0.62		
	0.46				0.46		
Arms	2.8						
	L1						
Vrms	247.9						
18/07/1	2 21:22:38	230	V 50Hz	1.Ø E	N50160		
VOL.TAG	Æ	E	IERGY	TREND	HOLD		

Case Study on UPS

Case Study on UPS

Comparison of LS Graph

Without Interruption

With Interruption

Comparison of LS Graph

Without Interruption

With Interruption

ど LS Graph

ど LS Graph

Harmonic Trend

Version: V02.10

Harmonic Trend in Domestic Complex

HARMONICS TABLE

		③ 0:00:19)	ଅ- ଲେ ଏଙ
Amp	L1 -		L3	N
H1%r	97.3	98.9	97.8	49.3
Н3%г	15.4	10.4	12.5	66.9
H5%r	7.8	2.8	4.1	22.2
H7%r	13.8	2.3	5.5	22.7
H9%r	10.3	1.0	4.7	37.2
H11%r	5.6	1.6	1.4	11.8
H13%r	4.8	0.5	1.2	10.1
H15%r	2.4	0.5	1.1	7.4
05/26/11	15:41:36	250V 50Hz3	3.0° WYE	EN50160
VAW V&A		HARMONIC GRAPH	TREND	HOLD

Power & Energy						
	FUND	© 0:00:13	3	୯ ଲ -୯		
	L1		L3	Total		
kVA kVAR PF CosQ A rms	1.0 1.3 + 0.8 0.68 0.80 6	- 1.8 1.9 + 0.7 { -0.92 -0.94 8	0.7 1.0 0.67 0.74 4	- 0.1 4.1 + 0.8 -0.02		
	L1		L3			
Vrms	233.80	234.55	238.06			
05/26/11	10:59:53	250V 50Hz3	3.0 WYE	EN50160		
	Ξ	ENERGY	TREND	HOLD RUN		

HARMONICS TABLE

		Ø 0:36:22	2	C 🚥 📭
Amp	L1 -		L3	N
H1%r	96.0	91.5	95.4	97.5
Н3%г	21.0	29.1	4.2	21.0
Н5%г	14.7	6.6	4.9	17.8
H7%r	7.6	6.3	3.1	11.0
Н9%г	13.9	5.7	2.3	10.0
H11%r	6.4	2.4	1.8	5.0
H13%r	2.9	1.8	2.5	2.9
H15%r	2.7	1.7	1.2	0.9
05/26/11	10:58:20	250V 50Hz3	3.Ø WYE	EN50160
V A W V&A		HARMONIC GRAPH	TREND	HOLD RUN

EFFECTS OF HARMONICS ON TRANSFORMERS

- Harmonics can affect transformers primarily in two ways CORE LOSSES OF TRANSFORMER: voltage harmonics produce additional losses in the transformer core as the higher frequency harmonic voltages setup hysteresis loops, which superimpose on the fundamental loop.
- Each loop represents higher magnetization power requirements and higher core losses. Increasing the voltage distortion may increase the eddy currents in the core laminations.
- These losses depend on the core lamination and the quality of the core steel. A second and a more serious effect of harmonics is due to harmonic frequency currents in the transformer windings

EFFECTS OF HARMONICS ON TRANSFORMERS

- The harmonic currents increase the net RMS current flowing in the transformer windings which results in additional I²R losses (conductor losses).
- Winding eddy current losses are also increased. Eddy-current losses are induced currents in a transformer caused by the magnetic fluxes.
- These induced currents flow in the windings in the core, and in other conducting bodies subjected to the magnetic field of transformers and cause additional heating.

DERATING OF TRANSFORMERS AND "K" FACTOR:

- Transformers that are required to supply large non-linear loads must be derated to handle the harmonics. This derating factor is based on the percentage of the harmonic currents in the load and the rated winding eddy current losses.
- Two recommended methods have been proposed for derating transformer Kilovolt ampere ratings to accommodate harmonic loading.
- One is the COMPUTER AND BUSINESS EQUIPMENT "MANUFACTURER METHOD" [CBEMA-METHOD] also called CREST FACTOR METHOD; and another is the IEEE. Method by which transformers may be rated for suitability to handle harmonic loads is by "K" factor rating

NEUTRAL BUS SIZE AND TRIPLEN HORMONICS:

- THE TRANSFORMER THAT SUPPLY LARGE TRIPLEN HARMONICS GENERATING LOADS SHOULD HAVE TO THE NEUTRALS OVER SIZED.
- THIS IS BECAUSE, THE THIRD HARMONIC CURRENTS OF THE THREE PHASES ARE IN PHASE AND THERFORE TEND TO ADD IN THE NEUTRAL CIRCUIT.
- IN THEORY, THE NEUTRAL CURRENT CAN BE AS HIGH AS 173% OF THE PHASE CURRENTS.
- TRANSFORMERS FOR SUCH APPLICATIONS SHOULD HAVE A NEUTRAL BUS THAT IS TWICE AS LARGE AS THE PHASE BUS.

Questions Please

Thanks for the opportunity

