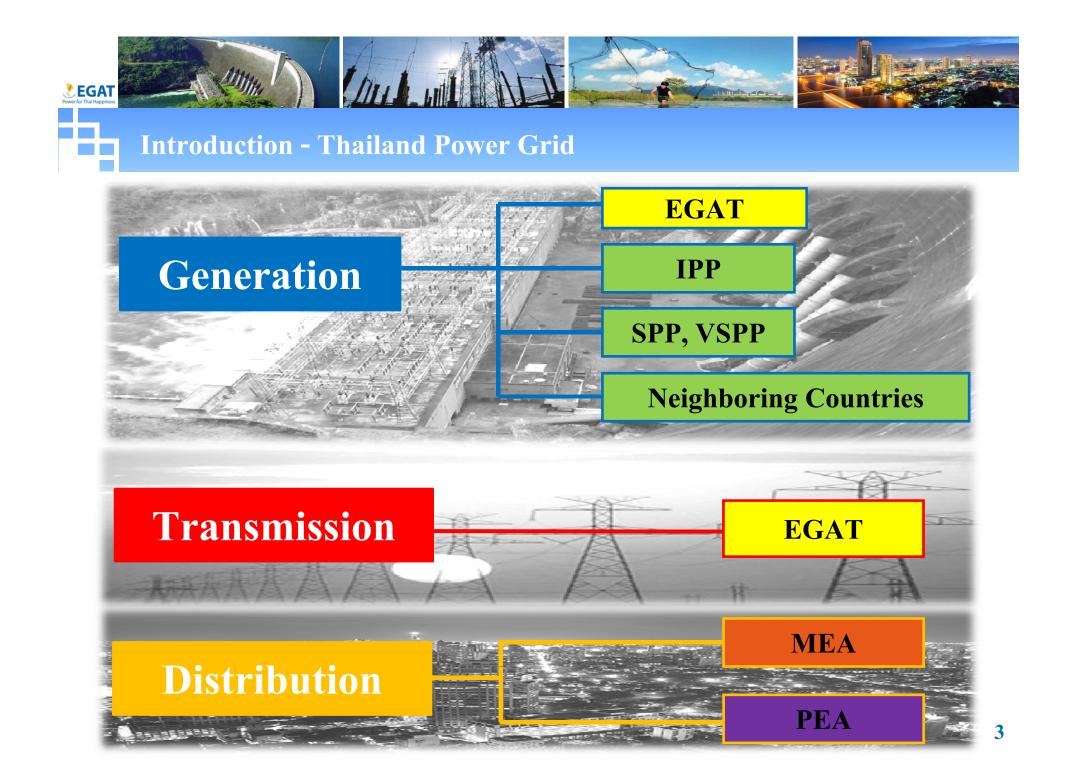
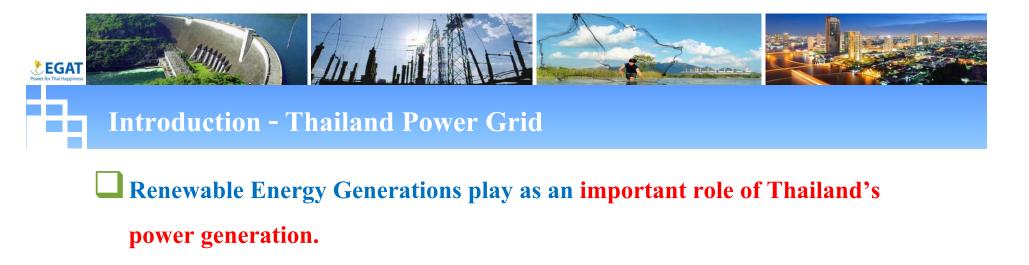


Power Quality Evaluation on the Impact of Renewable Energy Generations in Thailand Power Grid

PEERAPOL HOKHAM

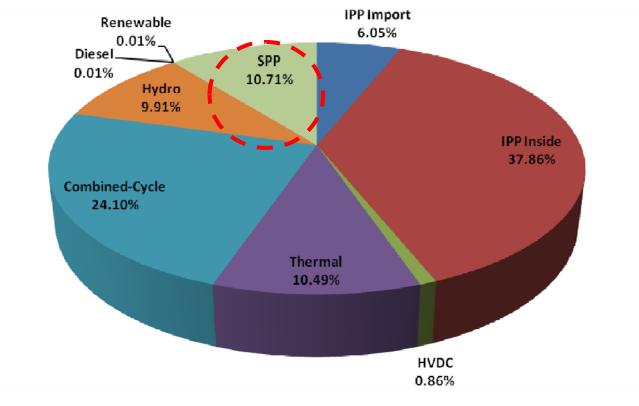
Control and Protection System Division


Electricity Generating Authority of Thailand

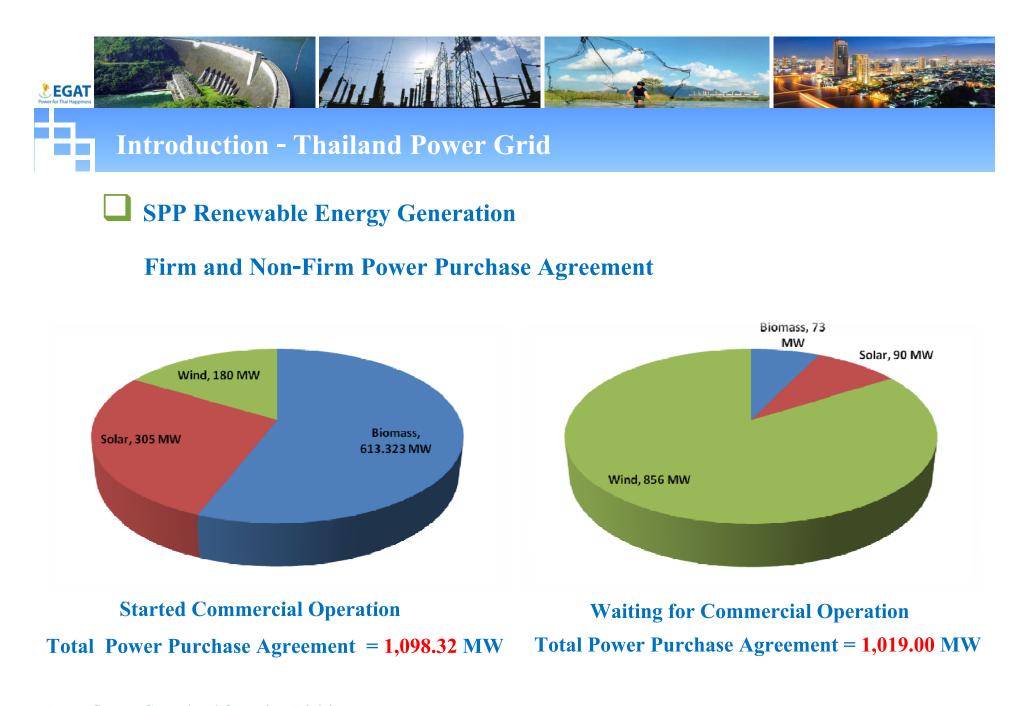


PQ SYNERGY 2015

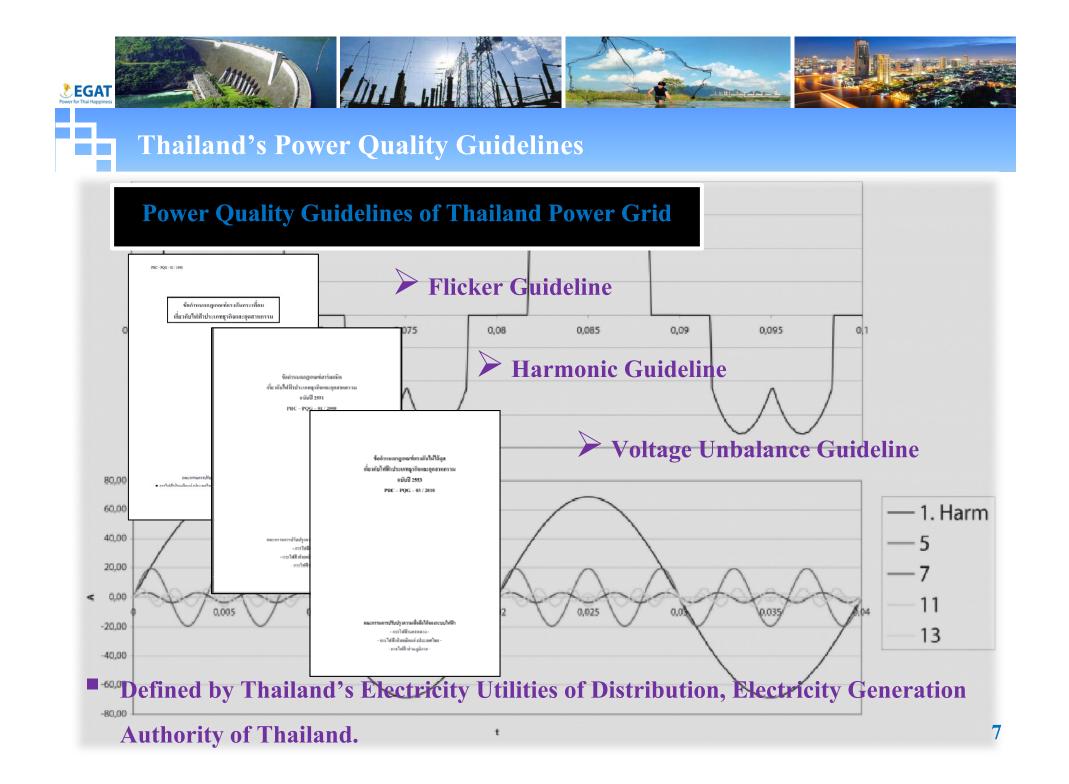
- ***** Introduction
- Power Quality Guidelines of Thailand Power Grid
- **PQ** Evaluation at SPP Substation
- **PQ** Evaluation at Transmission Substation
- Problems and Challenges
- **Conclusions**


Thailand's Government encourages the electricity suppliers to generate their electricity from renewable energy.

Introduction - Thailand Power Grid


Total Power Capacity 34,780.03 MW

Total Power Capacity of EGAT


Power System Control and Operation Division,

Electricity Generating Authority of Thailand (EGAT), March. 2015.

Power System Control and Operation Division,

Electricity Generating Authority of Thailand (EGAT), March. 2015.

Thailand's Power Quality Guidelines

Limit of PQ Indexes from Thailand's Power Quality Guidelines

Supply System Voltage (kV) at PCC Point	Pst Limit
115 kV and below	1.0
above 115 kV	0.8

Short Term Flicker Severity Values

Supply System Voltage (kV) at PCC Point	THDv Limit
400 V and below	5%
12, 22, 24 and 33 kV	4%
69, 115 kV and above	3%

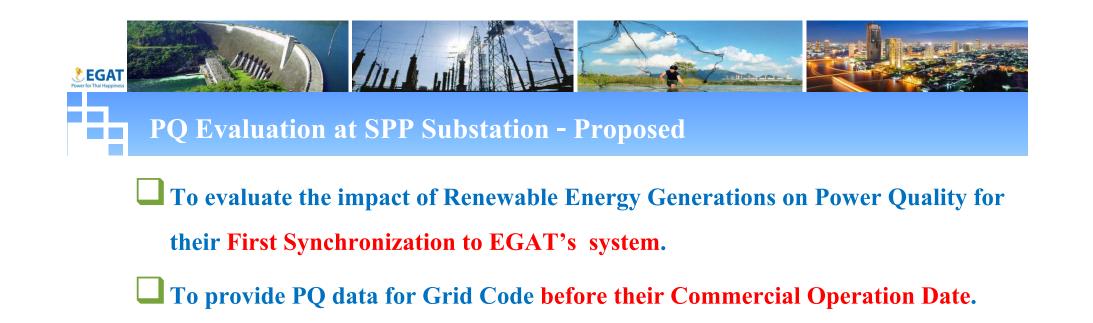
V Total Harmonic Voltage Distortion

Supply System Voltage (kV) at PCC Point	Voltage Unbalance Factor (%u) Limit
500 kV	0.8
230 kV	0.8
69 and 115 kV	1.4
12, 22, 24 and 33 kV	1.8
400 V and below	2.0

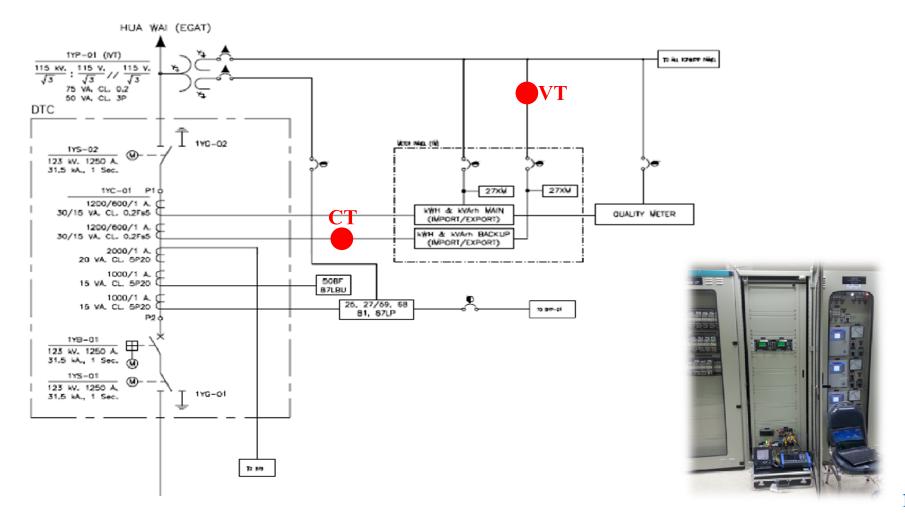
Voltage Unbalance Factor

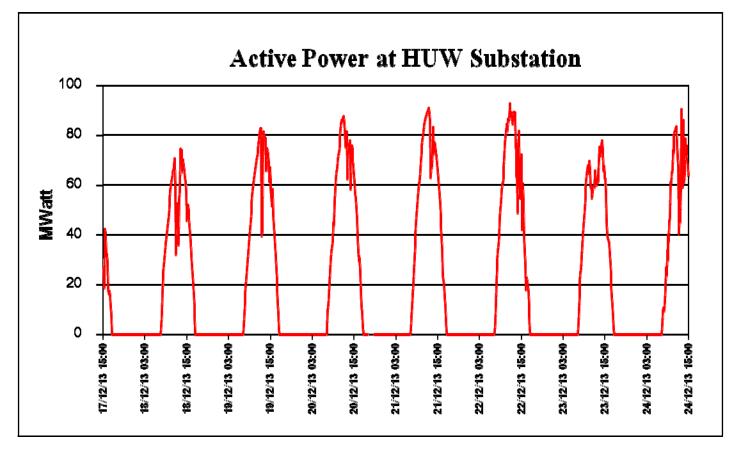
Thailand's Power Quality Guidelines

Power Quality Monitoring according to EN50160 Standard



- Time interval 10 minutes
- Observation Period for 1 week or more
- Use the values at 95 Percentile for evaluation




Installed PQ Meter at HUW Substation at Point of Common Coupling (PCC)

PQ Evaluation at SPP Substation - HUAWAI 115kV (HUW)

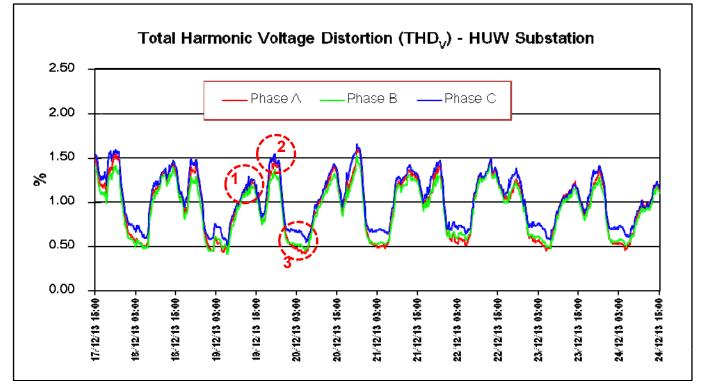
Recording data every 10 minutes, during 17 - 24 December 2013.

The Solar Power Plant generated power 40 - 90 MW.

PQ Evaluation at SPP Substation - HUAWAI 115kV (HUW)

PQ Indexes compared with Limit of Guidelines.

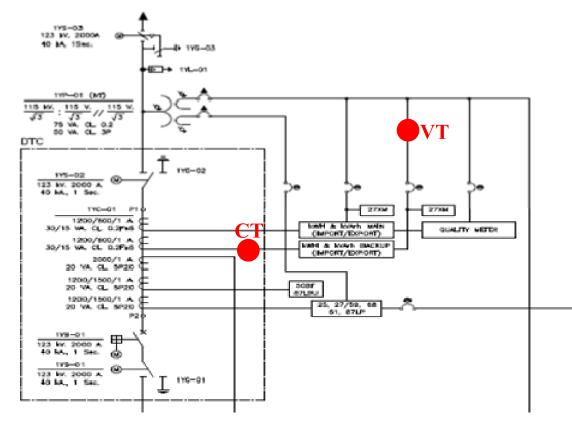
Substation	Short Term Severity Values, Pst			
Substation		Limit	As Found	Evaluated
HUW	Phase A	1.0	0.15 🖊	Passed
	Phase B	1.0	0.13	Passed
	Phase C	1.0	0.14	Passed


Substation	Total Harmonic Voltage Distortion, %THDv			
Substation		Limit	As Found	Evaluated
HUW	Phase A	3%	1.40%	Passed
	Phase B	3%	1.32%	Passed
	Phase C	3%	1.47% 🐥	Passed

	Voltage Unbalance Factor, %u			
Substation	Limit	As Found	Evaluated	
HUW	1.4%	0.77%	Passed	

Max Value

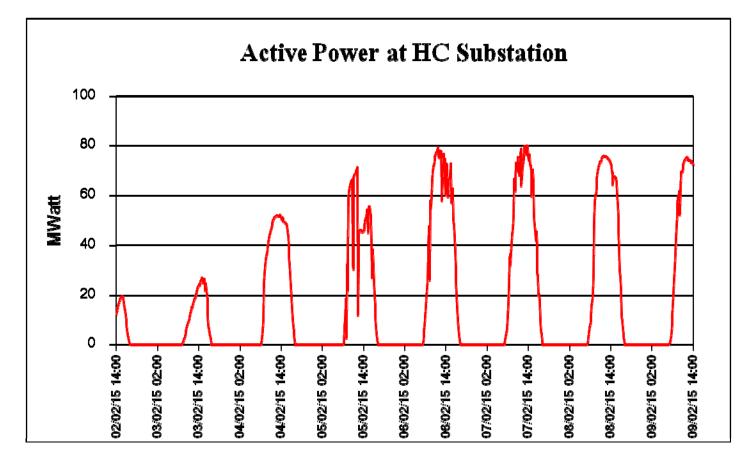
The Background Harmonic of System is about 0.60%.


1.7.00 am - 6.00 pm : THDv is 1.46% peak, caused by Generation and Load.

- 2.6.00 pm 12.00 pm : THDv is 1.50% peak, caused by Load.
- 3.12.00 pm 7.00 am : THDv is 0.60% peak, caused by Load.

Installed PQ Meter at HC Substation at Point of Common Coupling (PCC)

115KV LINE TO HANG CHAT EGAT SUBSTATION



PQ Evaluation at SPP Substation - HANG CHAT 115kV (HC)

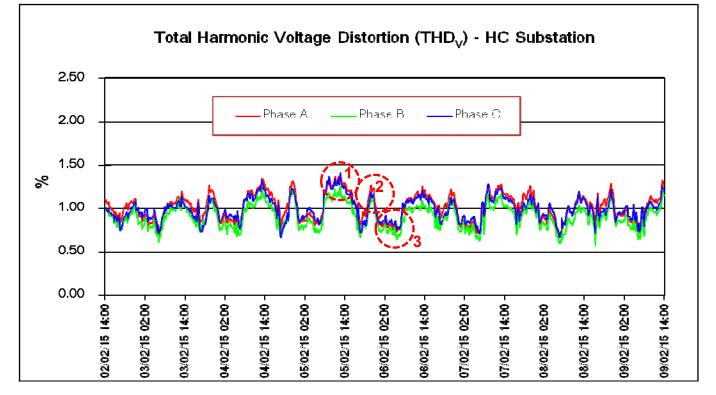
Recording data every 10 minutes, during 2 - 9 February 2015.

The Solar Power Plant generated power **20 - 80 MW**.

PQ Evaluation at SPP Substation - HANG CHAT 115kV (HC)

PQ Indexes compared with Limit of Guidelines

Cubatation	Short Term Severity Values, Pst				
Substation		Limit	As Found	Evaluated	
НС	Phase A	1.0	0.18 🖊	Passed	
	Phase B	1.0	0.18	Passed	
	Phase C	1.0	0.17	Passed	


Substation	Total Harmonic Voltage Distortion, %THDv			
Substation		Limit	As Found	Evaluated
НС	Phase A	3%	1.27% 🐥	Passed
	Phase B	3%	1.14%	Passed
	Phase C	3%	1.22%	Passed

	Voltage Unbalance Factor, %u			
Substation	Limit As Found		Evaluated	
НС	1.4%	0.25%	Passed	

Max Value

The Background Harmonic of System is about 0.80%.

1.7.00 am - 6.00 pm : THDv is 1.41% peak, caused by Generation and Load.

2.6.00 pm - 12.00 pm : THDv is 1.31% peak, caused by Load.

3.12.00 pm - 7.00 am : THDv is 0.80% peak, caused by Load.

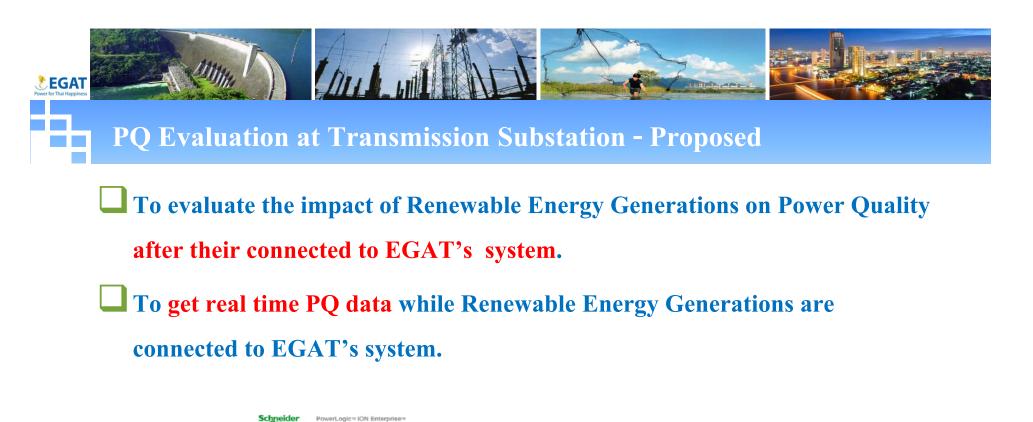
PQ Evaluation at SPP Substation – Data Analysis

- **HUW has index values of THDv and %u more than HC except Pst index.**
- **The maximum THDv of HUW and HC are increased by their Solar Plant and Distribution Load about 0.8% and 0.6% from Background THDv.**
- **The Power Quality Indexes at all interconnecting points are within the Guidelines.**
- **U** The Renewable Energy Generations do not contribute the impact on power quality in power system.

Q-b-t-t-r-	PQ Evaluation			
Substation	Flicker Harmonic		Unbalance	
HUW				
НС				

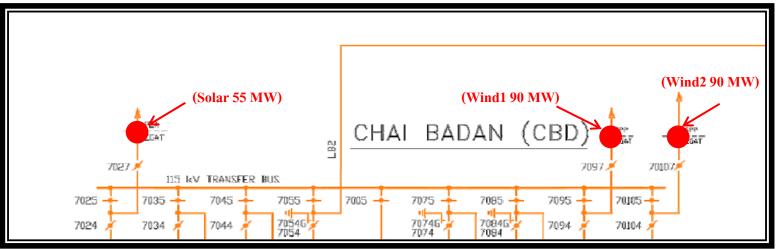
4. 124

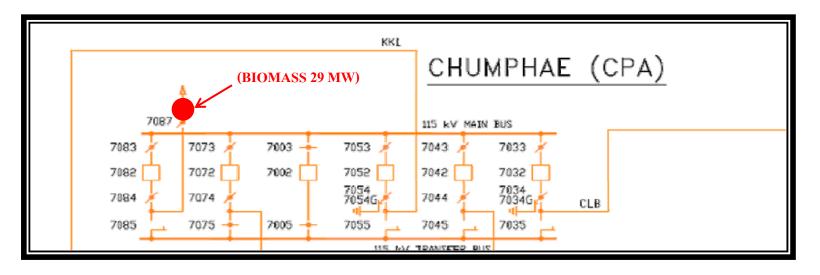
PQ Evaluation at Transmission Substation


THE CONTRACTOR OF STREET, STRE

CALLAND A AFT

PQ Evaluation at EGAT's Substations


CPA Substation 115 kV Line to BIOMASS



Central.C8D_115_kV_Wind Volts/Amps Power Quality	Energy & Dmd Inputs/Outputs Setupints Setup/Diagnostic	Back to Network
Yolts II	Current Pewer 250 A c -17,065 kW c	Frequency 50.02 Hz
118,310 V ca	247 A b -16,907 kw b	Power Factor 99.7 %
% V unbal	255 A a -17,369 kW a kW total -51,341 kW kVAR total 60,335 V an 66,651 V bn 66,512 V cn	Vin average 68,499 V
VII average 118,634 V	1 average k/k total 1 251 A 51,484 kvA 1 Volts In	
	Central.CBD_115_kV_Wind	
Logs	Long-term mir/max	
	Device Time 19/07/2013 14:53:38.316 Device Type 7650	

Installed PQ Meter at EGAT's Substation at Point of Common Coupling (PCC)

PQ Indexes compared with Limit of Guidelines.

					As Found			
			Limit	CBD(Solar) 55 MW	CBD(Wind1) 90 MW	CBD(Wind2) 90 MW	CPA(BIO) 29 MW	Evaluated
		Phase A	1.00	0.17	0.18	0.17	0.16	Passed
	JAN	Phase B	1.00	0.16	0.19	0.16	0.17	Passed
		Phase C	1.00	0.17	0.19	0.17	0.18	Passed
		Phase A	1.00	0.17	0.18	0.17	0.17	Passed
Pst	FEB	Phase B	1.00	0.16	0.18	0.16	0.18	Passed
		Phase C	1.00	0.17	0.18	0.17	0.18	Passed
		Phase A	1.00	0.23 🖊	0.23 🖊	0.23 🖊	0.18	Passed
	MAR	Phase B	1.00	0.22	0.22	0.22	0.19 🖊	Passed
		Phase C	1.00	0.21	0.21	0.21	0.18	Passed

		Limit	CBD(Solar) 55 MW	CBD(Wind1) 90 MW	CBD(Wind2) 90 MW	CPA(BIO) 29 MW	Evaluated
	JAN	1.4	0.76 🖊	0.68 🖊	0.68 🖊	0.49 🖊	Passed
%u	FEB	1.4	0.75	0.68	0.67	0.40	Passed
	MAR	1.4	0.70	0.63	0.63	0.28	Passed

PQ Evaluation at Transmission Substation

PQ Indexes compared with Limit of Guidelines.

					As Fo	bund					
				CBD(Solar) 55 MW	CBD(Wind1) 90 MW	CBD(Wind2) 90 MW	CPA(BIO) 29 MW	Evaluated			
		Phase A	3%	2.23% 🖊	3.61%	3.77%	1.37%	Passed			
	JAN	Phase B	3%	1.92%	3.24%	3.22%	1.53% 🖊	Passed			
		Phase C	3%	2.18%	3.31%	3.37%	1.27%	Passed			
	FEB	Phase A	3%	2.09%	3.67% 🐥	3.84% 🌞	1.25%	Passed			
%THDv		Phase B	3%	1.76%	3.30%	3.29%	1.36%	Passed			
		Phase C	3%	2.03%	3.39%	3.41%	1.21%	Passed			
		Phase A	3%	1.91%	3.08%	3.23%	1.24%	Passed			
	MAR	Phase B	3%	1.62%	2.83%	2.80%	1.34%	Passed			
		Phase C	3%	1.83%	2.76%	2.83%	1.26%	Passed			

Max Value

Although THDv of Wind Energy Generations are exceed the limit, the result of evaluation are accepted due to Capacitive Voltage Transformer (CVT) characteristic. (CVT can get the exactly data only at fundamental frequency- 50 Hz) Hence, the Harmonic Current must be concerned.

The Harmonic Current Limit is calculated by program which is defined by

Thailand's Electricity Utilities of Distribution and Generation.

	Input Data
System Voltage ⁽¹⁾ (kV)	1
Total Available Power ⁽²⁾ (MW)	1
Agreed Power ⁽³⁾ (MW)	1
Min. Short Circuit Power ⁽⁴⁾ (MVA)	1
Coincidence Factor ⁽⁵⁾	1
Transfer Factor ⁽⁶⁾	1

Pla	nning L	ng Level		Summation	Global	Harmonic	Current
HV	MV	LV		Exponent	Contribution	Order	Limit (A)
1	1.5	1.6	_	1	 0.1	 2	0.29
2	3	4		1	1	3	1.92
0.8	1	1	1	1	0	4	0.14
2	3	4		1.4	1.81790322	5	2.10
0.5	0.5	0.5		1.4	0	6	0.10
2	3	4		1.4	1.81790322	7	1.50
0.4	0.4	0.4		1.4	0	8	0.07
1	1.2	1.2		1.4	0	9	0.06
0.4	0.4	0.4		1.4	0	10	0.06
1.5	2	3		2	2.23606798	11	1.17
0.2	0.2	0.2		2	0	12	0.05
1.5	2	2.5		2	1.5	13	0.67

Calculation of the limit is derived from IEC 61000-3-6 (1996) Standard.

IEC 61000-3-6 (1996) Standard.

EGAT

"Assessment of Emission limits for distorting loads in MV and HV Power Systems"

Emission Limits in HV System:
$$E_{Uhi} \leq L_{hHV} \cdot \alpha \sqrt{\frac{S_i}{S_t} \cdot \frac{1}{F_{HV}}}$$

E_{Uhi} = Harmonic voltage emission Order h for Customer i

L_{hHv} = HV system planning level

Si = Agreed power of Customer i

St = Total Available Power in HV system

α = Harmonic Summation Exponent

F_{HV} = Coincidence factor for HV loads distorting simultaneously, typical value are between 0.4 and 1

IEC 61000-3-6 (1996) Standard.

EGAT

"Assessment of Emission limits for distorting loads in MV and HV Power Systems"

Harmonic Current Emission Limits :
$$E_{Ihi} = \frac{E_{Uhi}(\%) \times (V_{LN} / 100)}{Z_h}$$

E_{Ihi} = Harmonic current emission Order h for Customer i

Euhi = Harmonic voltage emission Order h for Customer IVLN = System Voltage (Phase-Ground) of CustomerZh = Frequency-dependent impedance at PCC

The Harmonic Current Limit is calculated by program.

	Input Data
System Voltage ⁽¹⁾ (kV)	115
Total Available Power ⁽²⁾ (MW)	445.37
Agreed Power ⁽³⁾ (MW)	90
Min. Short Circuit Power ⁽⁴⁾ (MVA)	911.8859
Coincidence Factor ⁽⁵⁾	1
Transfer Factor ⁽⁶⁾	1

Plai HV	nning L MV	evel LV	Summation Exponent	Global Contribution	Harmonic Order	Current Limit (A)
1	1.5	1.6	1	1	2	4.63
2	3	4	1	2	3	6.17
0.8	1	1	1	0.8	4	1.85
2	3	4	1.4	2	5	5.84
0.5	0.5	0.5	1.4	0.5	6	1.22
2	3	4	1.4	2	7	4.17
0.4	0.4	0.4	1.4	0.4	8	0.73
1	1.2	1.2	1.4	1	9	1.62
0.4	0.4	0.4	1.4	0.4	10	0.58
1.5	2	3	2	1.5	11	2.81
0.2	0.2	0.2	2	0.2	12	0.38
1.5	2	2.5	2	1.5	13	2.37

Input Data

- System Voltage $V_{L-L} = 115 \text{ kV}$ 1.5 2 2.5 2 1.5
- Total Avaliable Power = 445.37 MW
- Agreed Power = 90 MW
- Minimum Short Circuit Power = 911.89 MVA
- Coincidence and Transfer Factor are constant.

Harmonic Current compared with the Harmonic Guideline.

		As Found							
Harmonic Current (A)	Limit]/	AN	FEB			MAR		
		CBD(Wind1)	CBD(Wind2)	CBD(Wind1)	CBD(Wind2)	CBD(Wind1)	CBD(Wind2)		
Order 3	6.17	1.18 🌞	1.13 📥	0.59	0.53	0.62	0.58	Passed	
Order 5	5.84	3.44 🖊	3.43 🖊	2.66	2.56	2.09	2.04	Passed	
Order 7	4.17	1.36	0.79	1.47 📥	0.90 🐥	0.96	0.71	Passed	
Order 9	1.62	0.25	0.12	0.26 🖊	0.13 🖊	0.22	0.11	Passed	
Order 11	2.81	1.58	0.74	1.73	0.79	1.75 🌞	0.85 🖊	Passed	
Order 13	2.37	0.63 🖊	0.60 🖊	0.63	0.56	0.59	0.53	Passed	

Max Value

Normally, the Wind Energy Generation produced significant levels of 3rd, 5th, 7th, 9th, 11th, and 13th Harmonic Current.

PQ Evaluation at Transmission Substation – Data Analysis

EGAT

- □ The Power Quality Indexes of all Renewable Energy Generations are within Guidelines although THDv of Wind Energy Gennerations are exceed a limit. After considering Harmonic current, the harmonic distortion of Wind energy generation are accepted.
- **U** The impact of power quality in the power system will be increased by Power Generation of Renewable Energy.

The Renewable Energy Generations do not contribute the impact on power quality in power system.

Substation	PQ Evaluation						
Substation	Flicker	Harmonic	Unbalance				
CBD (Solar)	V						
CBD (Wind1)	M						
CBD (Wind2)							
CPA (BIOMASS)							

Most of 115 kV EGAT's substations use Capacitive Voltage Transformer (CVT) as measurement instrument. Therefore, harmonic voltage data from PQ meters that always has harmonic voltage value more than its should be.

Wind Energy Generations have high generation rate in Light Load Period, during 10.00 pm - 6.00 am. Hence, the energy storages and energy management should be more concerned.

- The impact of power quality will be more severe due to the increasing of Renewable Energy Generations.
- In the future, For many types of the new Renewable Energy Generation must be evaluated before they connect to power system and after they connected. The PQ data still collect for monitoring the impact of Renewable Energy Generations on power quality as well.
- The power quality evaluation method and data will be used to be the benchmark on Thailand's grid code for control the impact of Renewable Energy Generations on power quality.

Reference

- **EGAT, MEA and PEA,** *Flicker Guideline for Industrial Application*. 1998: Thailand.
- **EGAT, MEA and PEA,** *Harmonic Guideline for Industrial Application***. 2008: Thailand.**
- **EGAT, MEA and PEA, Unbalance Guideline for Industrial Application. 2010: Thailand.**
- Sang-suwan, T., Understanding Power Quality Concepts and Problems. 2009, Bangkok, Thailand: Kasetsart University.
- Tayjasanant, T., *Impacts of Renewable Energy and Distributed Generation on Power Quality*.
 2013, Center of Excellence in Electrical Technology, Bangkok, Thailand: Chulalongkorn University.

THANK YOU