

SMART ENERGY FOR BETTER LIFE AND SUSTAINABILITY

Case Study of Mitigate Power Quality Problems of Industrial Electrical Systems that Affects the Capacitor Bank Using by a Detune Filter.

Watcharapong Inkhlib Thorranit Limlenglert Churit Pansakul

Engineer PEA (Nakhon Pathom, THAILAND)

Agenda

- Introduction
- Flow Chart
- Result
- Conclusion

Harmonic

A sinusoidal voltage with a frequency equal to an integer multiple of the fundamental frequency of the supply voltage
Example:
Order 3: 3 × 50 Hz = 150 Hz

Detuned filter

Detuned filter are usually used in series with capacitor banks in order to improve the power factor in your system. The reactors also help to protect your system and capacitor banks from over current during switching on or overloading of capacitor banks due to harmonic resonance.

Parallel resonance

Series resonance

Rating-safety requirements-guide

IEC 60831-1:2002 Shunt power capacitors of the self-healing type for a.c. systems having a rated voltage up to and including 1000V Part 1 : General-Performance, testing and rating-safety requirements-guide for installation and operation. It requires that the capacitor be able to operate at 130% of the rated current continuously. This is to be able to support harmonic currents in the electrical system to a certain extent.

INTERNATIONAL STANDARD

PEA Grid code

การไฟฟ้าล่วนภูมิภาค PROVINCIAL ELECTRICITY AUTHORITY

Provincial Electricity Authority's Regulation

on the Power Network System Interconnection Code

B.E.2559 (2016)

o the
1

												0 0 0	•			• •		
	Lin	nit c	curre	ent	har	mo	nic	for	cus	tom	ner a	at P	CC					
Voltage Level at		Current Harmonics limit and Sequence (A rms)																
PCC (kV)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0.4	48	34	22	56	11	40	9	8	7	19	6	16	5	5	5	6	4	6
11 and 12	13	8	6	10	4	8	3	3	3	7	2	6	2	2	2	2	1	1
22, 24 and 33	11	7	5	9	4	6	3	2	2	6	2	5	2	1	1	2	1	1
69	8.8	5.9	4.3	7.3	3.3	4.9	2.3	1.6	1.6	4.9	1.6	4.3	1.6	1	1	1.6	1	1
115 and above	5	4	3	4	2	3	1	1	1	3	1	3	1	1	1	1	1	1

Limit voltage harmonic for customer at PCC

Voltage Level at	voltage harmonic distortion	voltage harmonic distortion limits each level							
PCC (kV)	limits (%)	odd	even						
0.400	5	4	2						
11, 12, 22 and 24	4	3	1.75						
33	3	2	1						
69	2.45	1.63	0.82						
115 and above	1.5	1	0.5						

						Ca	paci	tor B	Bank								
Step	DE				Cur	rent	harm	onic (A)					Ic(rmc)/I(rr)	THDv
No.	ΓΙ.	2	4	5	7	8	10	11	13	14	16	17	19			.)	(%)
1	0.875	2.1	1.1	68.6	23.9	0.7	1.1	27.1	19.1	1.1	6.0	374.2	16.6	(5.38		31.14
2	0.904	2.2	1.2	75.3	29.7	0.9	2.2	88.6	55.9	1.1	1.1	8.0	2.6		1.23		6.30
3 0.931		2.2	1.3	83.6	39.5	1.5	41.9	69.0	11.3	0.4	0.5	3.9	1.4		1.11		4.91
4	0.955	2.2	1.4	94.0	58.8	3.9	2.0	24.7	6.3	0.2	0.3	2.6	0.9		1.03		3.32
5	0.975	2.2	1.5	107.5	116.0	6.1	1.0	15.0	4.3	0.2	0.2	1.9	0.7		1.05		4.76
6	0.990	2.3	1.6	125.7	3035.9	1.7	0.7	10.8	3.3	0.1	0.2	1.5	0.6		7.19		101.49

In addition, the 5th and 11th harmonics, which are negative sequences, It will cause the motor to rotate in the opposite direction or against the normal direction of rotation, causing the motor to become hot because power must be used to resist this force.

	Detune Filter															
	Step	PF.	Current harmonic (A)									Ic(rmc)/I(cr)	THDv			
No.	No.		2	4	5	7	8	10	11	13	14	16	17	19		(%)
	1	0.873	2.1	0.8	57.2	18.8	0.5	0.7	15.3	7.8	0.4	0.8	7.4	3.6	1.00	1.94
	2	0.900	2.2	0.6	52.4	17.8	0.5	0.7	14.6	7.5	0.3	0.7	7.0	3.4	1.00	1.80
	3	0.925	2.2	0.5	48.3	16.8	0.4	0.6	13.9	7.1	0.3	0.7	6.7	3.3	1.00	1.69
	4	0.948	2.2	0.4	44.7	16.0	0.4	0.6	13.3	6.8	0.3	0.7	6.5	3.1	1.00	1.58
	5	0.968	2.3	0.4	41.7	15.2	0.4	0.6	12.8	6.6	0.3	0.6	6.2	3.0	0.98	1.49
	6	0.984	2.3	0.3	39.0	14.5	0.4	0.6	12.3	6.3	0.3	0.6	6.0	2.9	1.00	1.41

Compare current harmonics when switching Detune Filter

Conclusion

Capacitor Bank															
Step No.	PF.				Ic(rms)/I(cr)	THDv									
		2	4	5	7	8	10	11	13	14	16	17	19		(%)
1	0.875	2.1	1.1	68.6	23.9	0.7	1.1	27.1	19.1	1.1	6.0	374.2	16.6	5.38	31.14
2	0.904	2.2	1.2	75.3	29.7	0.9	2.2	88.6	55.9	1.1	1.1	8.0	2.6	1.23	6.30
3	0.931	2.2	1.3	83.6	39.5	1.5	41.9	69.0	11.3	0.4	0.5	3.9	1.4	1.11	4.91
4	0.955	2.2	1.4	94.0	58.8	3.9	2.0	24.7	6.3	0.2	0.3	2.6	0.9	1.03	3.32
5	0.975	2.2	1.5	107.5	116.0	6.1	1.0	15.0	4.3	0.2	0.2	1.9	0.7	1.05	4.76
6	0.990	2.3	1.6	125.7	3035.9	1.7	0.7	10.8	3.3	0.1	0.2	1.5	0.6	7.19	101.49

							De	tune F	ilter						
Step No.	PF.			ค่า		THDV									
		2	4	5	7	8	10	11	13	14	16	17	19	ic(rms)/i(cr)	(%)
1	0.873	2.1	0.8	57.2	18.8	0.5	0.7	15.3	7.8	0.4	0.8	7.4	3.6	1.00	1.94
2	0.900	2.2	0.6	52.4	17.8	0.5	0.7	14.6	7.5	0.3	0.7	7.0	3.4	1.00	1.80
3	0.925	2.2	0.5	48.3	16.8	0.4	0.6	13.9	7.1	0.3	0.7	6.7	3.3	1.00	1.69
4	0.948	2.2	0.4	44.7	16.0	0.4	0.6	13.3	6.8	0.3	0.7	6.5	3.1	1.00	1.58
5	0.968	2.3	0.4	41.7	15.2	0.4	0.6	12.8	6.6	0.3	0.6	6.2	3.0	0.98	1.49
6	0.984	2.3	0.3	39.0	14.5	0.4	0.6	12.3	6.3	0.3	0.6	6.0	2.9	1.00	1.41

SMART ENERGY FOR BETTER LIFE AND SUSTAINABILITY

Thank You!

SMART ENERGY FOR BETTER LIFE AND SUSTAINABILITY

PEA