19th Annual PQSynergy[™] International Conference and Exhibition 2019

Commercial Presentation

A Case of PQ Monitoring System of a Very Large Utility in New York City

Terence Chandler

General Manager Dranetz Asia, Dranetz Corporation

THE STANDARD FOR ENERGY & POWER MEASUREMENT

Mr. Chandler has more than 30 years experience in the Power Quality Industry. He has published more than 100 papers on the various aspects of Power Quality, conducted 100's of classes and seminars on Power Quality.

Power Quality Monitoring System at the Consolidated Edison Company of New York

The Consolidated Edison Company of New York

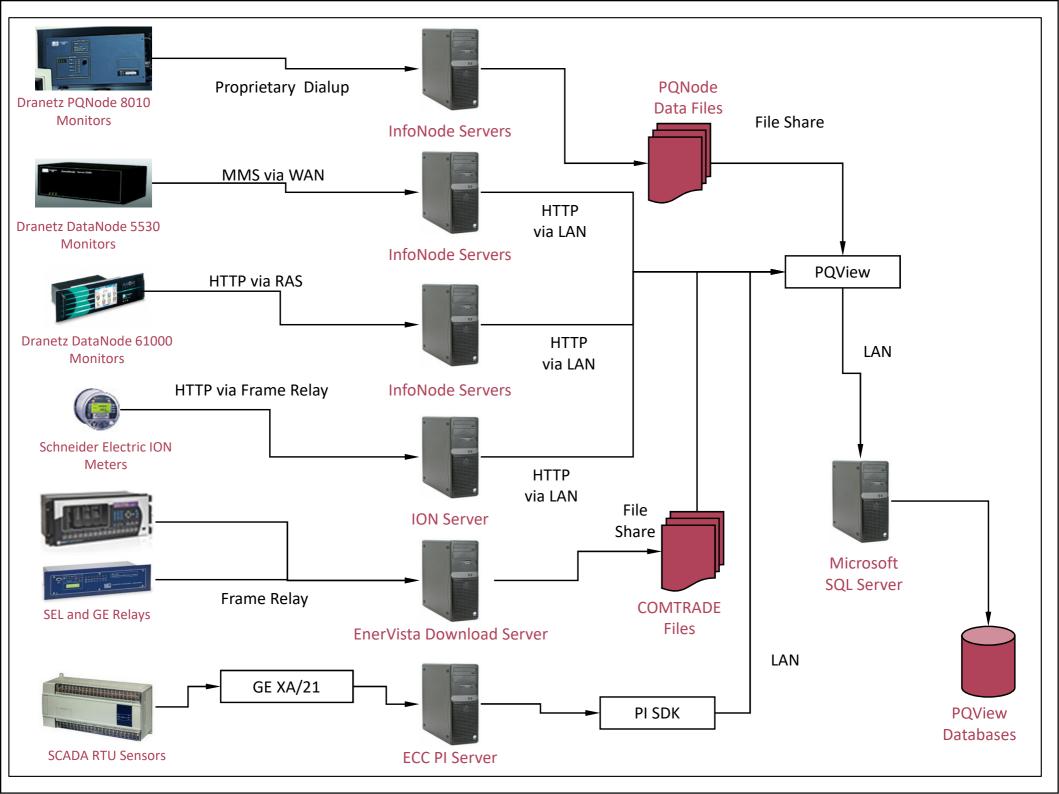
- Provide electrical service to New York City and Westchester County
- 3.3 million electric customers
- System Peak Load: 13189 MW
- 62 Distribution Substations
- 83 Secondary Networks and Non-Network Load Pockets
- 2247 Distribution Feeders
- 87% of Distribution System is Underground

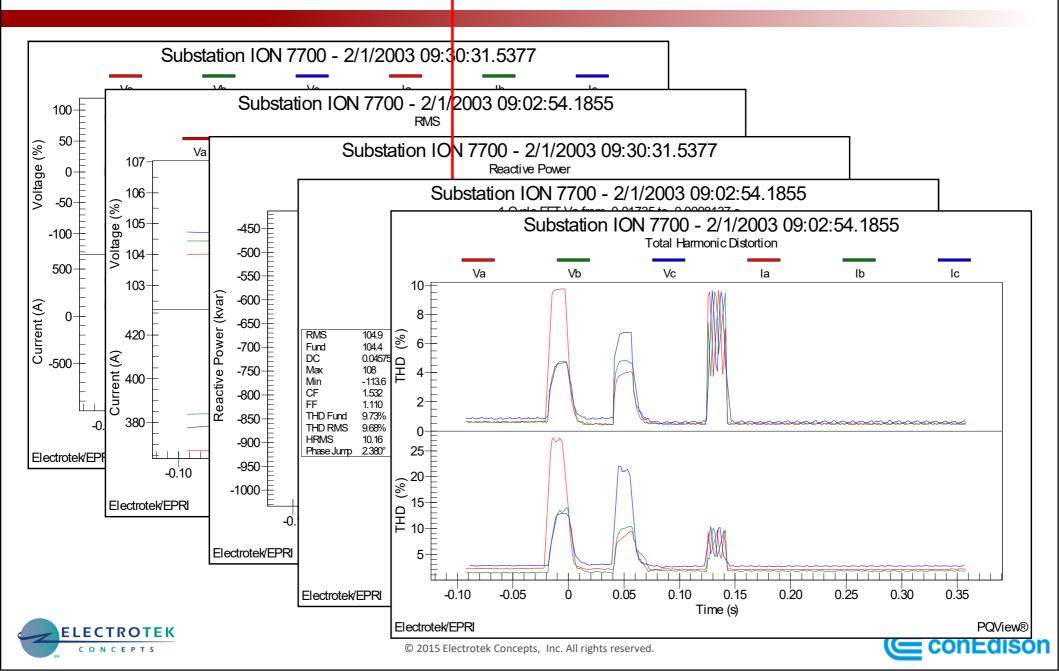
© 2015 Electrotek Concepts, Inc. All rights reserved.

Power Quality Monitoring System (PQMS) at the Consolidated Edison Company of New York

- Data Integration and Basic Analysis
- Permanent Faults
- Inrush Events
- Second Faults
- Incipient Faults
- SCADA/PQ System Federation

Con Edison Area Substation Monitoring

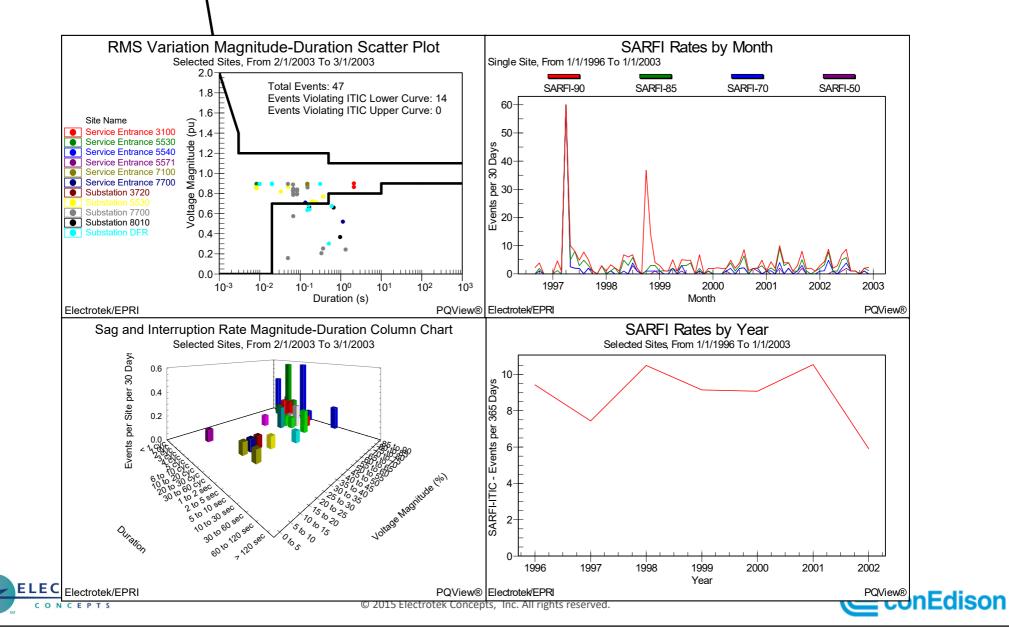



© 2015 Electrotek Concepts, Inc. All rights reserved.

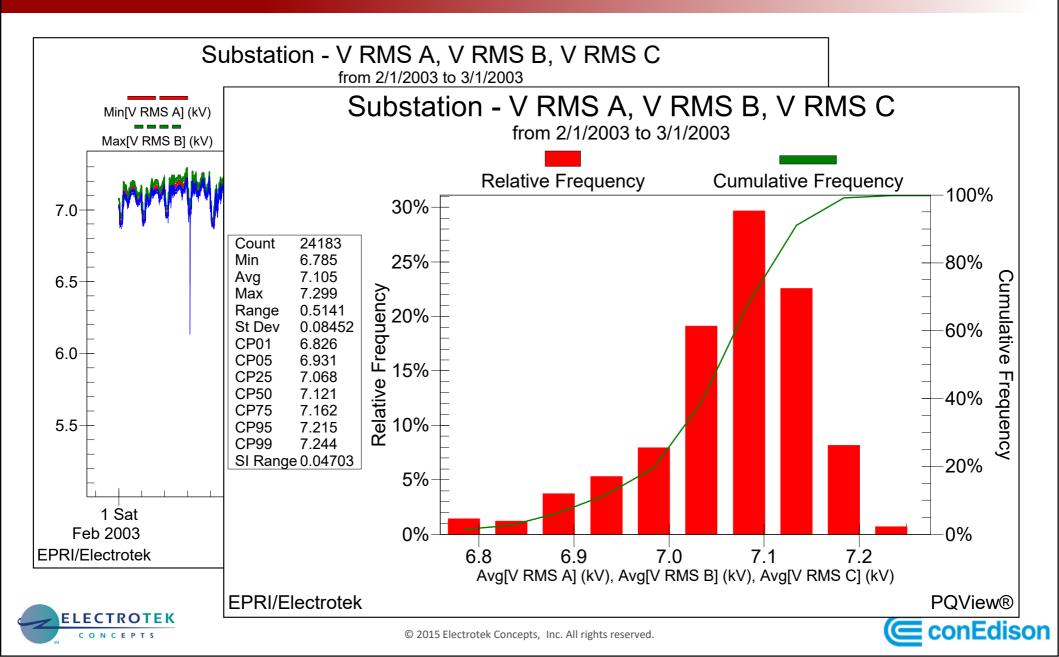
TROTEK

Examples of Derivations Possible from Waveform Events using Con Edison PQMS

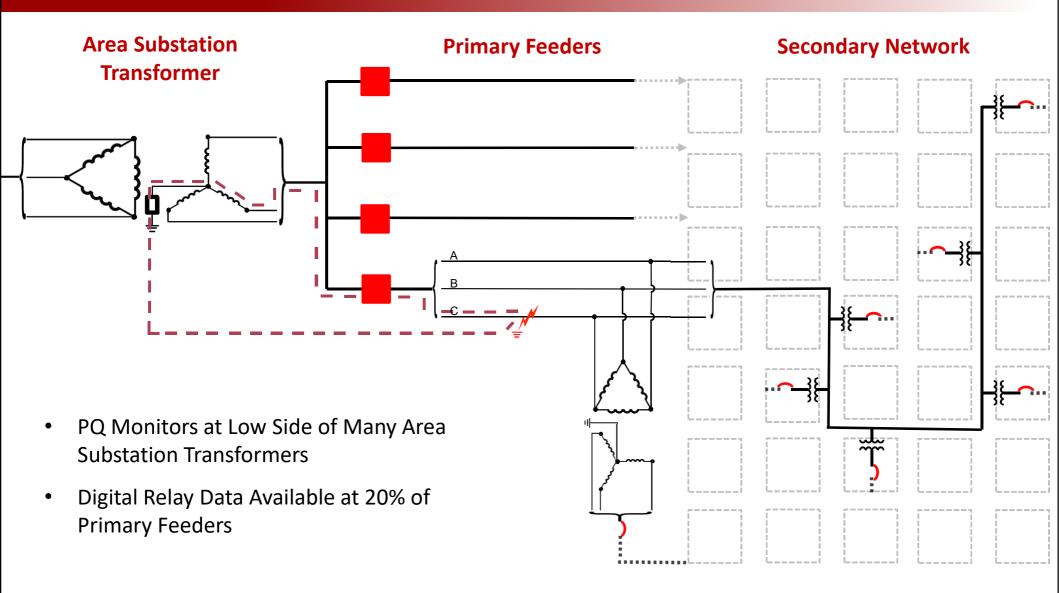
Derivations from Waveform and RMS Samples


- Reactance-to-Fault
- Radial Fault Location
- Spectrum Charts
 - 1, 2, 3, 4, 5, 6, 10, and 12 Cycle Windows
- Phasors and Harmonic Phasors
- High-Pass Filter and Low-Pass Filter
- First Derivative , Second Derivative, Third Derivative, and Squared Value.Time
- Mean Values and RMS Values
- Load Resistance, Load Reactance, Load Impedance, and Load Impedance Angle
- Real Power, Reactive Power, Apparent Power, and Energy
- Delta Real Power, Reactive Power, Apparent Power, and Energy
- Characteristic Voltage
- Waveform Transformation

- Missing Voltage and Delta Current from First Cycle or from Ideal Waveform
- Symmetrical Components
- Delta Symmetrical Components
- Three-Phase Diode Rectifier Output
- Line Frequency during Event
- Total Harmonic Distortion (THD)
- DC Component, Fundamental Component, and Harmonic Trends during Event
- Links to Map Viewer and Trend Viewer
- IEEE P1159.2 RMS Characteristics
- IEEE P1159.2 Point-in Wave Characteristics
- IEEE P1159.2 Missing Voltage Characteristics
- Dranetz Event Characteristics
- Digital Status Changes
- Operations Summary


RMS Voltage Variation Analysis

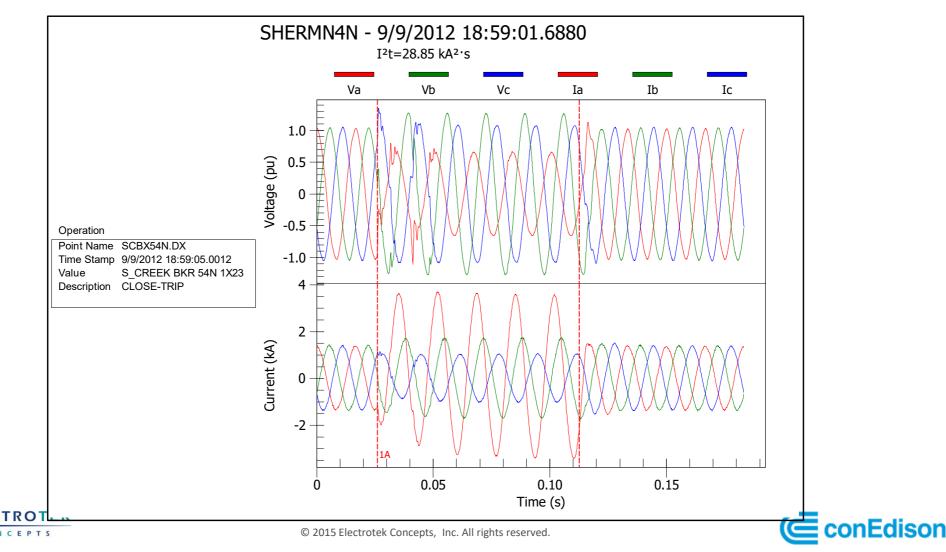
Analysis of Data Logs



Single Line to Ground Fault

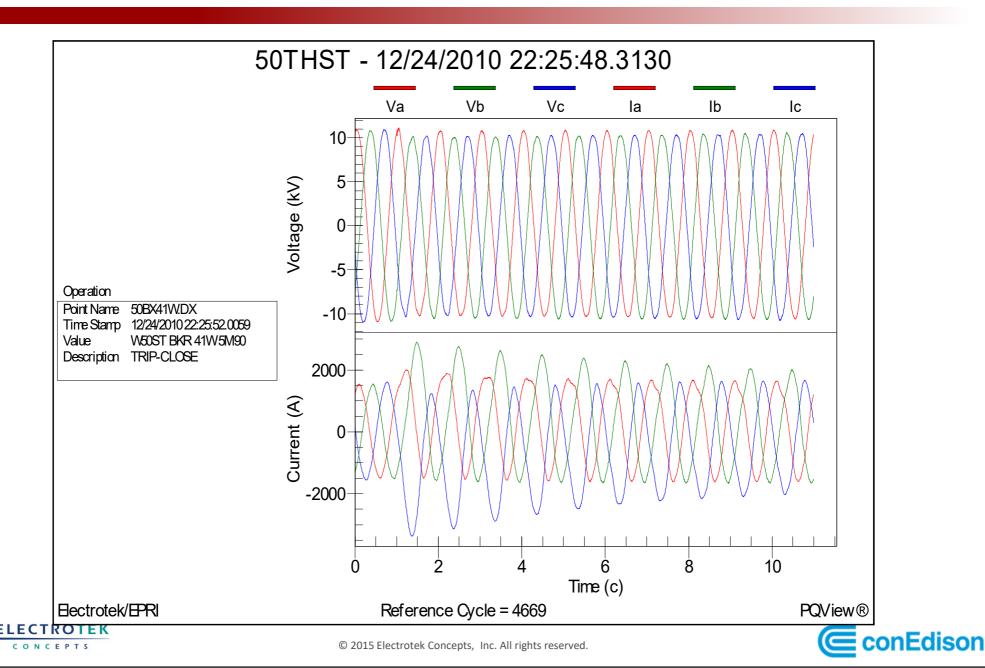
CTROTEK

CEPT

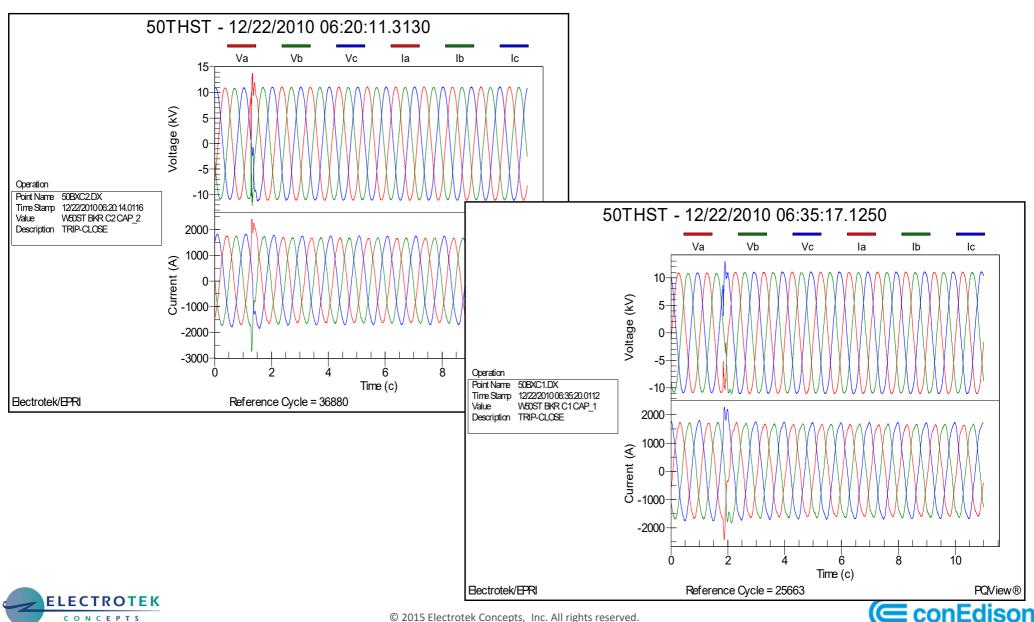


© 2015 Electrotek Concepts, Inc. All rights reserved.

Example SLG Fault Recorded by PQ Monitor at Area Substation



• Fault type and fault start/stop detection algorithm based on waveforms, phasors, zero-sequence, negative-sequence, and spectral content.



Example Correlation of Feeder Reclose Event with PI Event from SCADA Operation

Example Correlations of Capacitor Energizing Event with PI Event from SCADA Operation

© 2015 Electrotek Concepts, Inc. All rights reserved.

Event Categorization

Permanent Faults

- •Single-Phase: A, B, C
- •Two-Phase: AB, BC, CA
- •Three Phase Faults: ABC

Subcycle Faults

- •Single-Phase: A, B, C
- •Two-Phase: AB, BC, CA
- •Three Phase Faults: ABC

Feeder Inrush

•A, B, C, AB, BC, CA, ABC

Overcurrent

- •Zero-Sequence: I0
- •Negative-Sequence: I2
 - "Second Fault"
- •Phase: IA IB, IC

Voltage Sag

•A, B, C, AB, BC, CA

Automatic E-Mail Notifications

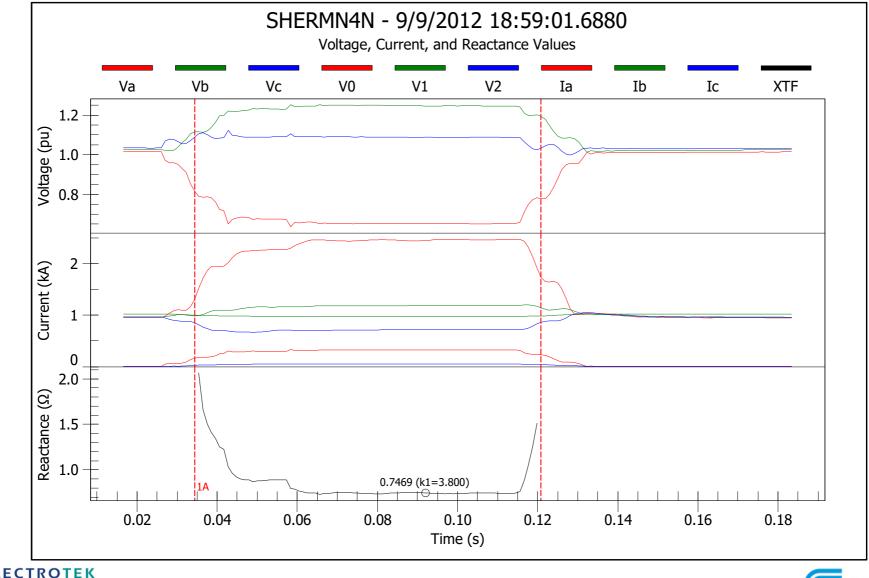
Inrush Events

	PQView Infonode RTF hofmannp; washingto																9	Sent: Sun 9/21	L/2014 2:00
	Subject: Inrus	sh Event Not	tificatio	n: Pa	wiew TR4	Ļ													
This email h	as been sent to you	-	\frown		-														
Site Name	Local Time	Hyperlinks	Fault Type	RMS Dur	Time Offset(s)	XTF (Ω)	Va (V)	Vb (V)	Vc (V)	Ia (A)	Ib (A)	Ic (A)	10 (A)	k1	Relay Channels		Operati	ons	
	9/21/2014 13:58:08.4410	<u>Waveforms</u> <u>One-Line</u>	Inrush 2CA		0.05279		7389	7636	7319	1050	1048	1405	2	2.500		2014-09- 21 13:58:12	PABX13A.DX	PARKVIEW BKR 13A (44M04)	TRIP- CLOSE

• Fault Events

rom: PO	QView Infonode RTF <pqview@coned.com></pqview@coned.com>	Ser
d	I-RTFNotificationManhattan	
	Subject: Fault Notification: Parkview TR4	

This email has been sent to you by rule from PQVIEW Substation_Nodes


Site Name	Local Time	Hyperlinks	Fault Type		Time Offset(s)	XTF (Ω)	Va (V)	Vb (V)	Vc (V)	Ia (A)	Ib (A)	Ic (A)	10 (A)	k1	Relay Channels	Operations
	9/5/2014 22:56:02.6500	<u>Waveforms</u> <u>One-Line</u>	1C	5.496 c	0.09163	0.5893	10325	8605	4052	1223	1102	3327	913	2.500		2014-09- 05 22:56:04 PABX42B.DX BKR 42B (44M24) CLOSE- TRIP

Reactance-to-Fault Calculations for PQ Measurement at Area Substation

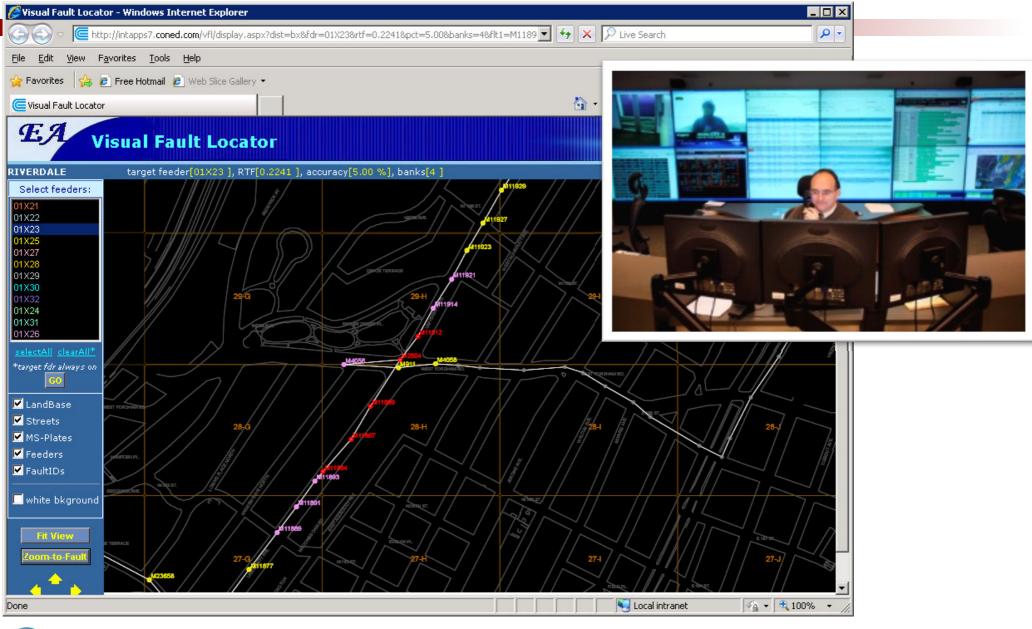
© 2015 Electrotek Concepts, Inc. All rights reserved.

NCEPTS

Predicted Location of Fault by Matching Measured Reactance to Reactance of Circuit Model

conEdison

RTFDetai	il - Wi	ndows Internet Explo	rer					
PQ View 0.7469	Y XTI	F Banks Feede	r Factor XTF 0.2241	Accuracy 5.00 %	Defaults	Set as Default	Recalculate	;
9/9/2012	6:59	:01 PM Single-Phas	e Fault on Phase A				SABIND, RTF U	Jsei
Feeder	Feed	der:01X23 Ne	etwork : Riverdale				Print	1
01M02 01M03		Structure		Location		Resistanc	eReactance	5
D1M03	26	<u>M23658</u>				0.0975	0.1479	
01M04	27	<u>M23659</u>				0.1027	0.1574	
	28	<u>M11873</u>				0.107	0.1654	
	29	<u>M11874</u>				0.1116	0.1741	
	30	<u>M11877</u>				0.1169	0.1843	
1M50	31	<u>M11889</u>				0.1223	0.1925	
1M51	32	<u>M11891</u>				0.126	0.1982	
1M54	33	<u>M11893</u>				0.1299	0.2041	
1X22	34	M11894				0.1316	0.207	
1X23	35	M11897				0.1366	0.2165	
	36	M11899				0.1408	0.2244	
1X28	37	M2504				0.1465	0.2352	
	38	M11912				0.1507	0.2416	
1X32	39	<u>M11914</u>				0.1538	0.2476	
	40	<u>M4056</u>				0.179	0.2514	
	41	<u>M11921</u>				0.1571	0.2538	
	42	<u>M11923</u>				0.1604	0.26	
	43	<u>M11927</u>				0.1634	0.2658	
	44	M911				0.1922	0.2659	



Visualized Location of Fault

ELECTROTEK

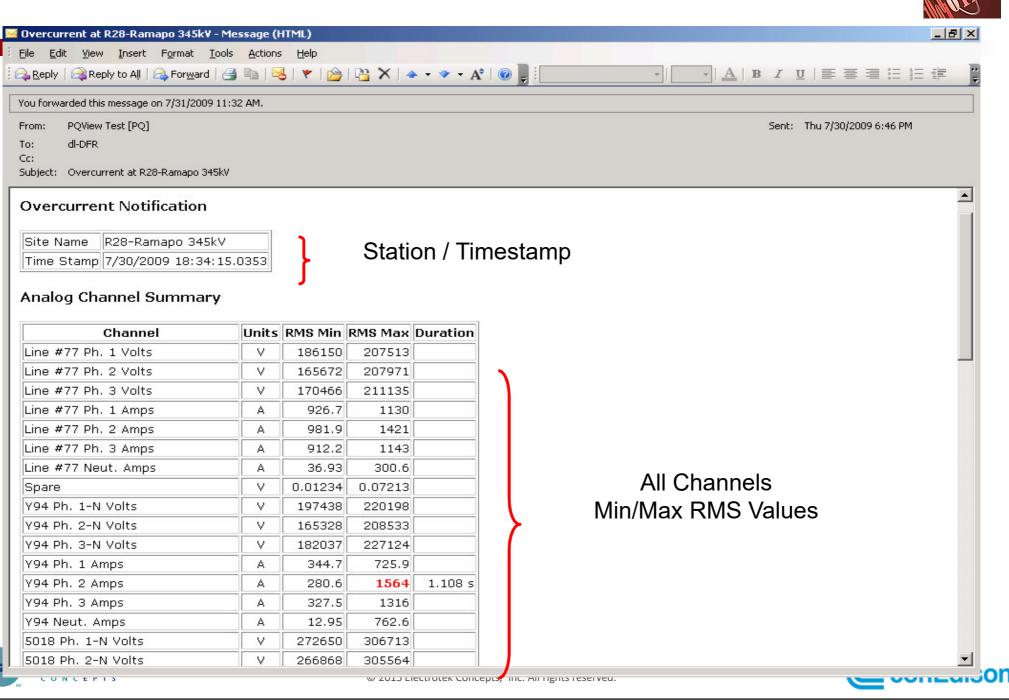
CONCEPTS

© 2015 Electrotek Concepts, Inc. All rights reserved.

Distribution Fault Location Results

- On average, use of the reactance-to-fault method for fault location saves one hour per feeder restoration job
- Mitigates use of capacitive discharge thumpers and DC high voltage (hi-pot) testing

Year	0-1 MH	1-3 MH	3-5 MH	5-10 MH	> 10 MH
2009	64%	24%	5%	2%	6%
2010	67%	14%	5%	3%	11%
2011	64%	20%	8%	3%	5%
Summer 2012	76%	14%	4%	4%	1%


🚰 RelayRTF - Microsoft Internet Explorer			X	Į
<u>Eile E</u> dit <u>Vi</u> ew F <u>a</u> vorites <u>T</u> ools <u>H</u> elp			A	-
🔇 Back 🔹 🕥 🖌 💌 😰 🏠 🔎 Search 🕚	🔆 Favorites 🛛 🔗)• 🖕 🗹 • 📙 🎇 🦓		
Address 💩 http://wdevnet1/RTF/RelayRTF/RelayRTF.asp:	<		💽 🕞 Go 🛛 🍕 Convert 👻 🔂 Select	
Relay RTF - Power Quality		BARC	DUDIG, RTF Local Admin	
		🚰 RelayTargets - Microsoft Internet Expl	orer	
Recent Activity RTF	Substation I Ast <u>or</u>	Astor 28M18 (24A)		Close Window
Motthaven 4X54 (13A)	Gra 🖉 RelayRTI	06/12/2009 16:02 Single-Phase Fau	lt on Phase B RTF: 0.1689	
06/10/2010 10:50:07 AM Graph Three-Phase Fault Relay Targets	Mot 🅖 Visual Fault	PI C	Correlation Data	
RMS Duration: 2.588 Fault Duration: 37.80c	Mut <u>File Edit Vi</u> e New Archart	Name	TimeStamp	Description
Motthaven 4X54 (13A)	Roc	ASTOR BKR 24A (28M18)	2009-06-12 16:02:49	CLOSE-TRIP
06/10/2010 10:50:05 AM Graph	Trac Trac Trac	ASTON BAR 24A (201410)	2009-00-12 10:02:49	CLOBE-INIF
Three-Phase Fault Relay Targets RMS Duration: 2.58s Fault Duration: 21.00c	Whi EA	F	Relay Targets	
Motthaven 4X54 (13A)			Osc Trig On	
06/10/2010 10:50:03 AM Graph	Sub HERALD SQU/ Nor Select feede	PH	ASE IOC1 OP B	
Three-Phase Fault Relay Targets	Parl 28M01	PHA	ASE TOC1 PKP B	
RMS Duration: 2.58s Fault Duration: 21.00c	Seaj 28M02 28M04 28M03			
Motthaven 4X54 (13A)	28M05 28M09		DUND TOC1 PKP	
06/10/2010 10:50:01 AM Graph Three-Phase Fault Relay Targets	28M10 28M13	GRO	DUND IOC1 PKP	
RMS Duration: 2.58s Fault Duration: 2.40c	28M14 28M15 28M16	GRO	DUND IOC1 OP	
Motthaven 4X54 (13A)	28M17 28M19	NEC	G SEQ IOC1 PKP	
06/10/2010 10:49:59 AM Graph	28M18 28M06		nd+NegSeq On	
Three-Phase Fault Relay Targets RMS Duration: 2.58s Fault Duration: 2.40c	<u>selectAll</u> <u>clear</u> *target fdr alwaj		CB Status On	
	<u> </u>			
	☑ LandBase ☑ Streets		0-51 TRIP IOn	
	MS-Plates Feeders	501	I-51N TRIP IOn	
	FaultIDs	PHA	ASE IOC1 PKP B	
	💻 white bkgr		SND TRIP On	
	Fit View	Pł	HASE TRIP On	
	Zoom-to-Fa			

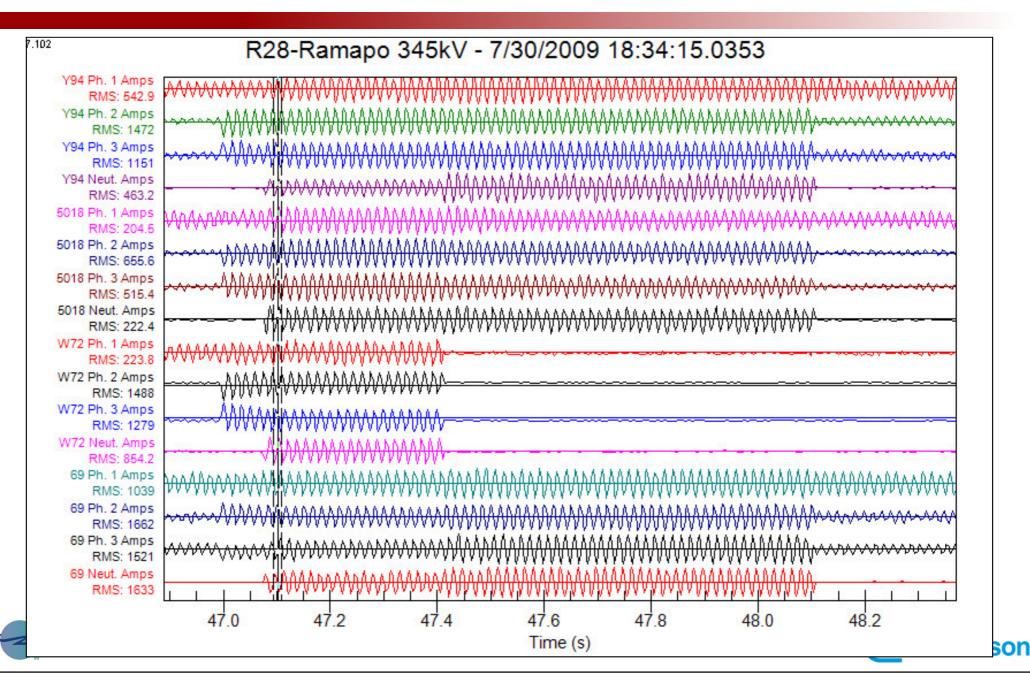
ē

S Local intranet

11

Transmission Feeder Trip - Email Notification

Transmission Feeder Trip - Email Notification



DN

Overcurrent at R28-Ramapo 345k¥ - Me:						
ile Edit <u>View I</u> nsert Format Iools Reply Reply to All A Forward A			PB 🗙 🔺	• • • A [‡]		- A B <i>I</i> <u>U</u> E E E E E E
ou forwarded this message on 7/31/2009 11:32	2 AM.					
From: PQView Test [PQ] Fo: dl-DFR Ec: Subject: Overcurrent at R28-Ramapo 345kV						Sent: Thu 7/30/2009 6:46 PM
Y94 Ph. 3-N Volts	V	182037	227124			
Y94 Ph. 1 Amps	A	344.7	725.9			
Y94 Ph. 2 Amps	A	280.6	1564	1.108 s		
Y94 Ph. 3 Amps	A	327.5	1316			
Y94 Neut. Amps	A	12.95	762.6			
5018 Ph. 1-N Volts	V	272650	306713			
5018 Ph. 2-N Volts	V	266868	305564			
5018 Ph. 3-N Volts	V	275698	309680			
5018 Ph. 1 Amps	A	113.8	234.7			
5018 Ph. 2 Amps	A	105.7	676.2			
5018 Ph. 3 Amps	A	108.3	551			
5018 Neut. Amps	A	6.478	229.5			
W72 Ph. 1 Amps	A	12.96	271.4			
W72 Ph. 2 Amps	A	11.15	1662	7.500 c	W72 Trip Out	
W72 Ph. 3 Amps	A	13.38	1535	1 c	·	
W72 Neut. Amps	A.	18.75	893.1		l	
59 Ph. 1 Amps	A	742.9	1106			
69 Ph. 2 Amps	Α	774.2	2140	1.125 s		
69 Ph. 3 Amps	Α	759.2	1991	1.025 s		
69 Neut. Amps	Α	11.17	2095	1.033 s		
Bnk Neut. Amps	Α	5.590	105.6			
Analog Channel 33 - Suggest Va	V	0.009061	0.05339			
Analog Channel 34 - Suggest Vb	V	0.005938	0.05304			
Analog Channel 35 - Suggest Vc	V	0.007906	0.06134			
Analog Channel 36 - Suggest Ia	A	0.01068	0.05751			

Transmission Feeder Trip Notification with Maximum RMS Values

Fault Location Projects using the Same Power Quality Monitoring System at Con Edison (PQView)

Company	Voltage (kV)	Initiated	Sensors	Circuit Models	SCADA Integration	Status
Con Edison Network Feeders	13, 27, 33	2005	PQ Monitors and Relays	Proprietary	OSIsoft PI System	Production
San Diego Gas & Electric	12	2006	PQ Monitors	SynerGEE		Pilot Completed
Wisconsin Public Service	25	2008	PQ Monitors	SynerGEE		Pilot Completed
United Illuminating Company	4.16, 13.2	2008	PQ Monitors	CYMDIST		Production
DTE Energy (Detroit Edison)	40	2009	PQ Monitors	Custom	OSIsoft PI System	Production
Georgia Power Network	12.47, 25	2019	Relays	CYMDIST		Preproduction
American Electric Power	13.2	2011	PQ Monitors	CYMDIST		Pilot Completed
Hydro-Québec	25	2012	PQ Monitors	CYMDIST		Pilot
Alabama Power Company	13.2	2012	PQ Monitors	CYMDIST	Oracle SOE	Preproduction
Hydro Ottawa	13.2	2013	PQ Monitors	CYMDIST	OSIsoft PI System	Pilot
Con Edison Overhead	4.16	2013	PQ Monitors	Proprietary		Pilot
Tennessee Valley Authority	161	2013	DFRs	CAPE		Pilot
National Grid	13 kV	2015	Recloser Controllers	CYMDIST		Prepilot
British Columbia Hydro	MV	2015	PQ Monitors and Relays	CYMDIST	OSIsoft PI System	Prepilot
Jamaica Public Service	MV	2015	PQ Monitors	CYMDIST		Prepilot

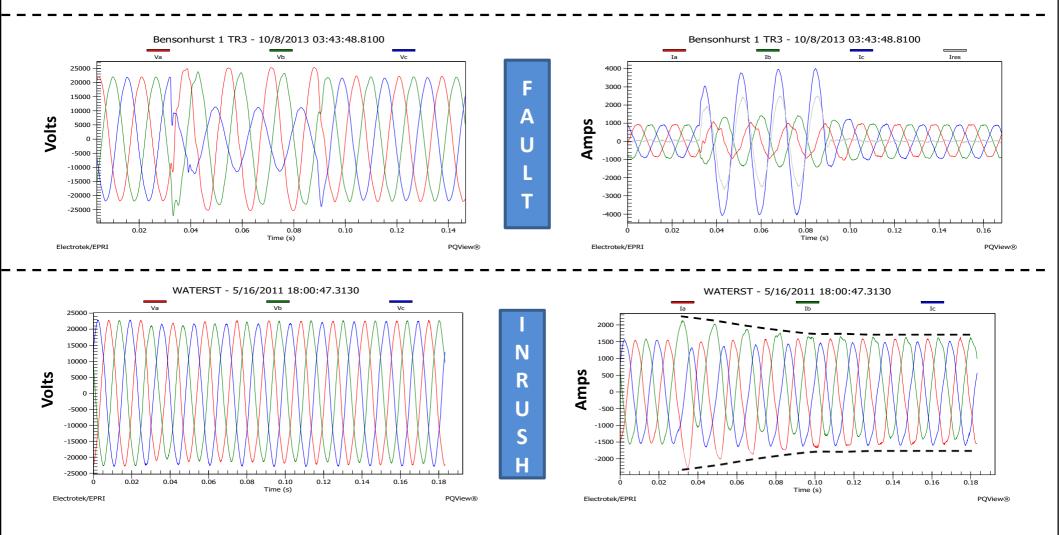
What are the Other Data Sources for the Power Quality Monitoring Systems at Con Edison (PQView)?

- IEEE[®] PQDIF
- IEEE[®] COMTRADE
- MODBUS®
- Advantech®
- Arbiter[®] Systems
- BTECH®
- Cooper CYMDIST
- Dranetz[®]
- EDMI
- Electro Industries®
- ENTSO-E Loads
- Environment Canada
- Fluke[®]/RPM
- GE®
- Gossen Metrawatt

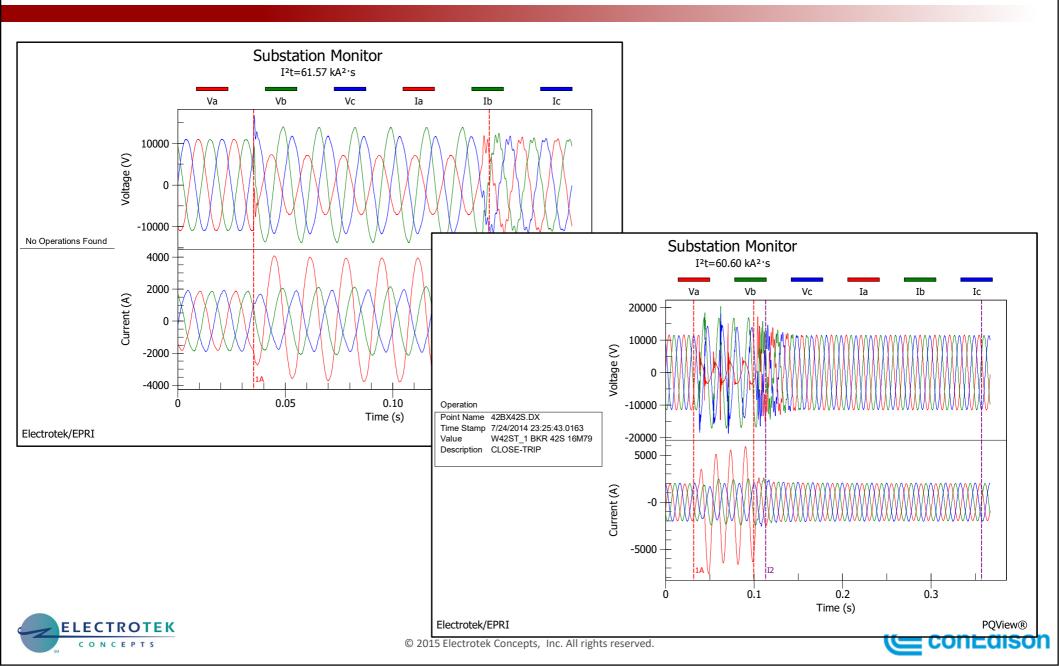
- I-Grid[®]
- GridSense
- HIOKI
- OSIsoft[®] PI System
- Power Monitors
- PSL PQube®
- Qualitrol[®] /LEM
- SATEC
- Schneider Electric[®]
- Schweitzer Engineering Laboratories®
- Siemens®
- SynerGEE[®] Electric
- TECTRA ALFA
- Unipower®
- Duke Energy Carolinas Oracle FMS

Power Quality Monitoring System (PQMS) at the Consolidated Edison Company of New York

- Data Integration and Basic Analysis
- Permanent Faults
- Inrush Events
- Second Faults
- Incipient Faults
- SCADA/PQ System Federation

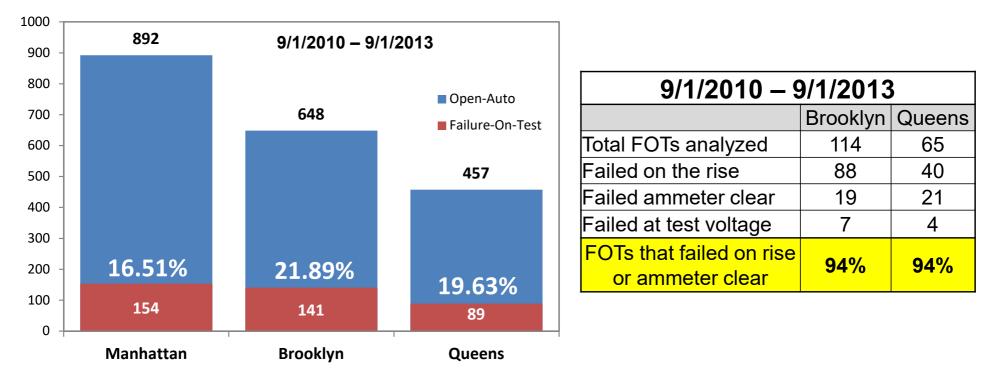

- A "cut-in open-auto" event (CIOA) describes a feeder trip immediately upon re-energization
- A CIOA could be caused by a fault or by inrush current
- Relays at area substations detect an overcurrent condition on the feeder and trip the breaker – even though there is no fault
- If there is no fault, the feeder can be re-energized quickly
- Con Edison needed automation to distinguish between fault events and inrush events reliably

Cut-In Open-Autos: Fault versus Inrush



© 2015 Electrotek Concepts, Inc. All rights reserved.

New Steps for Con Edison PQMS Module I²T Calculation and Analysis



"Second Faults"

- After a feeder is repaired a high voltage (hi-pot) test is performed
- Between 9/1/2010 9/1/2013 Manhattan, Brooklyn & Queens had 384 failed-on-test occurrences (FOTs)

Single Line to Ground Fault

CTROTEK

Capturing Waveforms during Second Faults and Sending Notifications

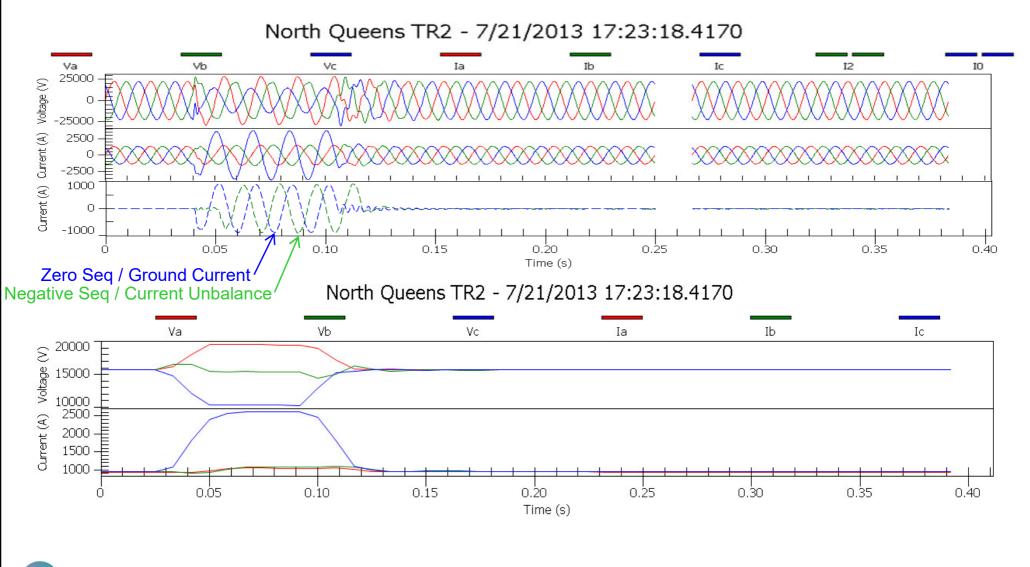


Secondary Network

- Two Voltage Sags Recorded by PQ Monitors at "Master Point"
- Only One SCADA Operation

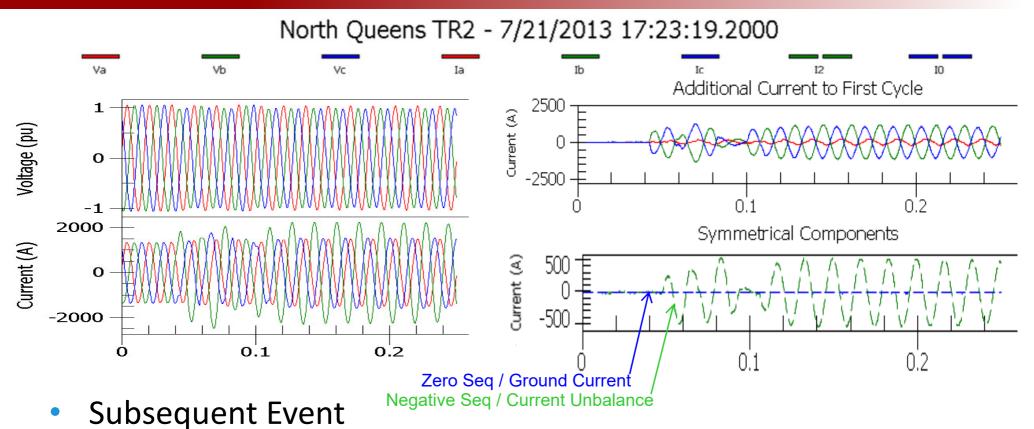
Area Substations

- SLG Fault with Zero-Sequence
- Subsequent Negative-Sequence Overcurrent
- One SCADA Operation


PQ Monitor Retrofitted with Negative-Sequence Filter

Second Fault: Initial Fault Measured at the Substation

© 2015 Electrotek Concepts, Inc. All rights reserved.


CTROTEK

NCEPT

F

Second Fault: Subsequent Overcurrent Measured at Substation

 A Negative-Sequence Current Filter installed on the monitor triggers when a current unbalance is detected to capture the event.

ROTFK

 The presence of negative-sequence current with no zero-sequence current indicates current is passing through a network transformer to a second fault.

Second Fault E-mail Notification

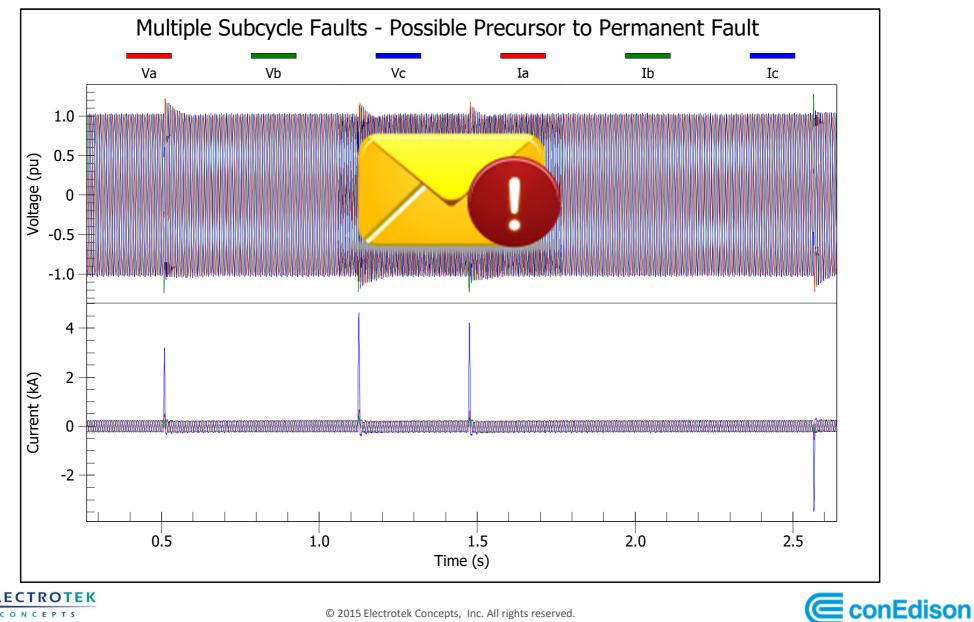
PQView sends an email notification after detecting a second fault and no operations.

• Fault

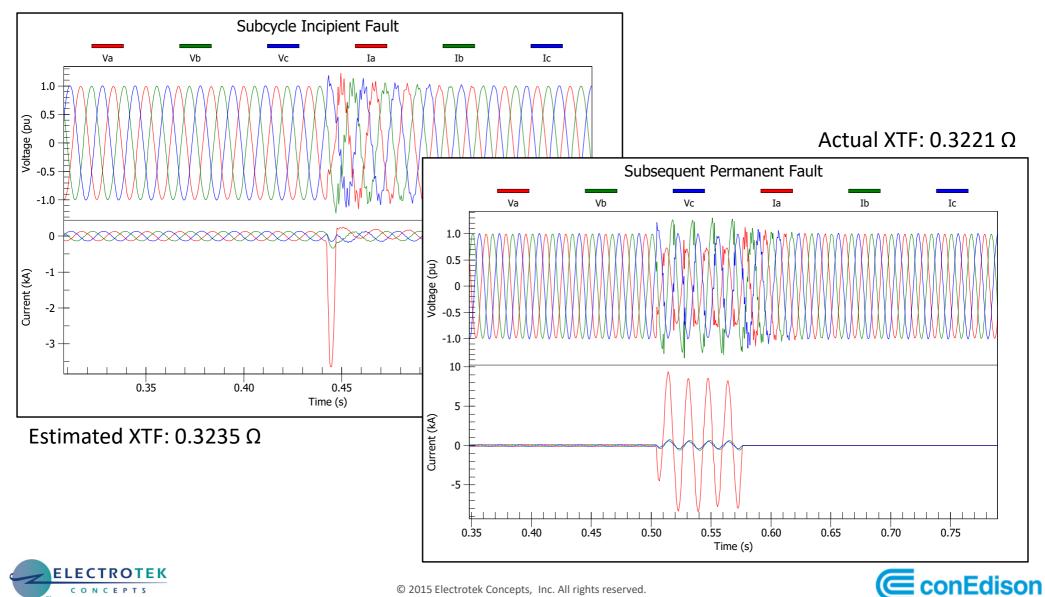
ubject:	T duit Not	fication: Plym	outh 5																				
is email has b	een sent to you by	rule from PQVIEW S	Substation	_Nodes																			
Site Name	Local Time	Hyperlinks	100	RMS Dur	Time Offset(s)					Ia It (A) (A	Ic (A)			Relay hannels						Operations			
ymouth ST R4	10/16/2013 12:52:02.4040	<u>Waveforms</u> <u>One-Line</u>	1A 5	.498 c	0.09963	1.092 7	7085 2	20302 1	7114 2	527 110	6 705	841	3	(3-10-1 52:03	.6	PYB	X448	S.DX PLYMO (1B56)	UTH BK		OSE
			-	n>																			
1:	PQView Infono	le RTF4 <pqview@c< th=""><th>coned.com</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pqview@c<>	coned.com																				
	PQView Infono		coned.com		mouth S	ST TR	34																
bject:	PQView Infono pq Possible S	le RTF4 <pqview@c< th=""><th>coned.com</th><th>ed: Ply</th><th></th><th></th><th>24</th><th>></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></pqview@c<>	coned.com	ed: Ply			24	>															
ubject:	PQView Infono pq POSSible S s been sent to 3	econd Fault D	oned.com Oetecte QVIEW	ed: Plyn Substati		S		Time	Offset	(s) X1 (Ω		Va V)	Vb (V)	Vc (V)	Ia (A)	Ib (A)	Ic (A)	10 (A)	kl	Relay Chan	nels O	Operation	5

Power Quality Monitoring System (PQMS) at the Consolidated Edison Company of New York

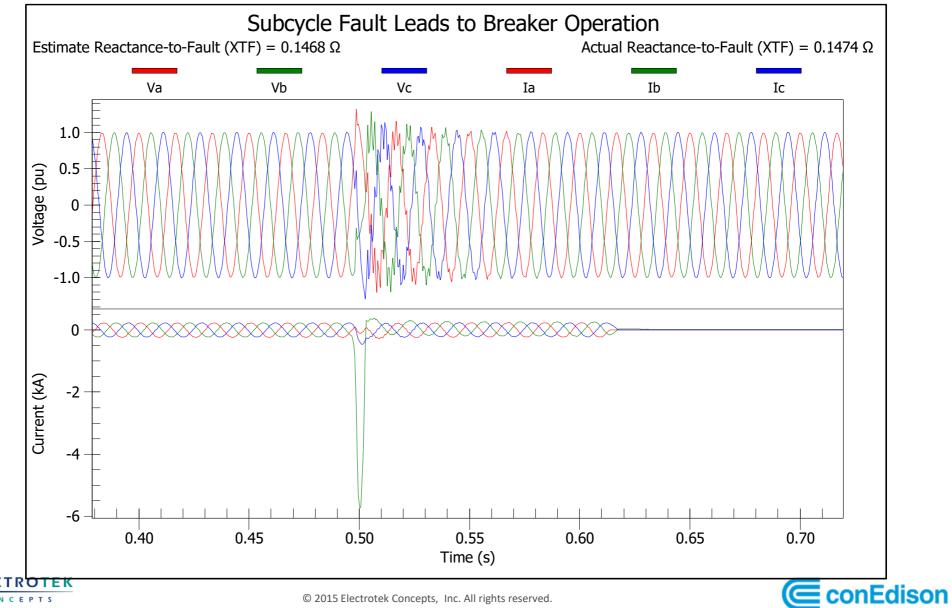
- Data Integration and Basic Analysis
- Permanent Faults
- Inrush Events
- Second Faults
- Incipient Faults
- SCADA/PQ System Federation



Incipient Fault Identification and Notification


NCEPTS

Incipient Subcycle Fault Location Using Time-Domain Estimation



© 2015 Electrotek Concepts, Inc. All rights reserved.

NCEPT

Subcycle Fault with Breaker Operation

© 2015 Electrotek Concepts, Inc. All rights reserved.

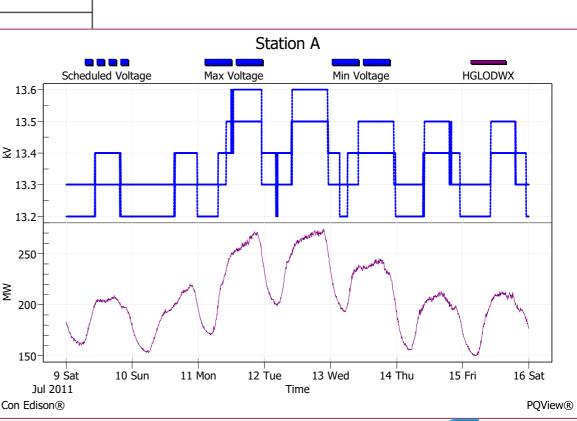
NCEPTS

Power Quality Monitoring System (PQMS) at the Consolidated Edison Company of New York

- Data Integration and Basic Analysis
- Permanent Faults
- Inrush Events
- Second Faults
- Incipient Faults
- SCADA/PQ System Federation

Area Substation Voltage Control

- The amount of MW load determines what the voltage should be at the area substation following a set of rules called the "voltage schedule".
 - Whether the voltage can be above or below the scheduled voltage depends upong the time of day and the day of week
- Methods of Controlling Area Substation Voltage
 - Voltage Var Control (VVC Mode)
 - Local Tap Changer Control System (CMVM Mode)
 - Manual Adjustment of Transformer Taps



conEdison

Area Substation Load versus Voltage Schedule

TOTAL 13KV BUS LOAD	13KV Feeder Bus	s Volts
(Megawatts)		
0 - 50	13,000	
51 - 100	13,100	
101 - 150	13,200	
151 - 200	13,300	
201 - 250	13,400	Sched
251 - 300	13,500	-
Above 300	13,600	13.5
	3	≩ 13.4-

Con Edison PQMS Module: *Voltage and Reactive Power Control Analysis*

😱 🖬 🤊 - (°' -)) +	StationSPeC	- =
Home Crea)
Image: Station SPector Image: Statin Spector Image: Statin Spector	Image: Station PQ Voltage Station SCADA Voltage Station SCADA Voltage Individual Transformer kV Scheduled Voltage Maximum Voltage Minimum Voltage PQ Voltage Deviation SCADA Voltage Deviation MW Range MW Range MVar Range MVar Range UCL MVar Range UCL MVar Imbalance MVar Imbalance	Zoom Window East 29th Street School PQ.ESTHST School PQ.ESTHST	_ D X

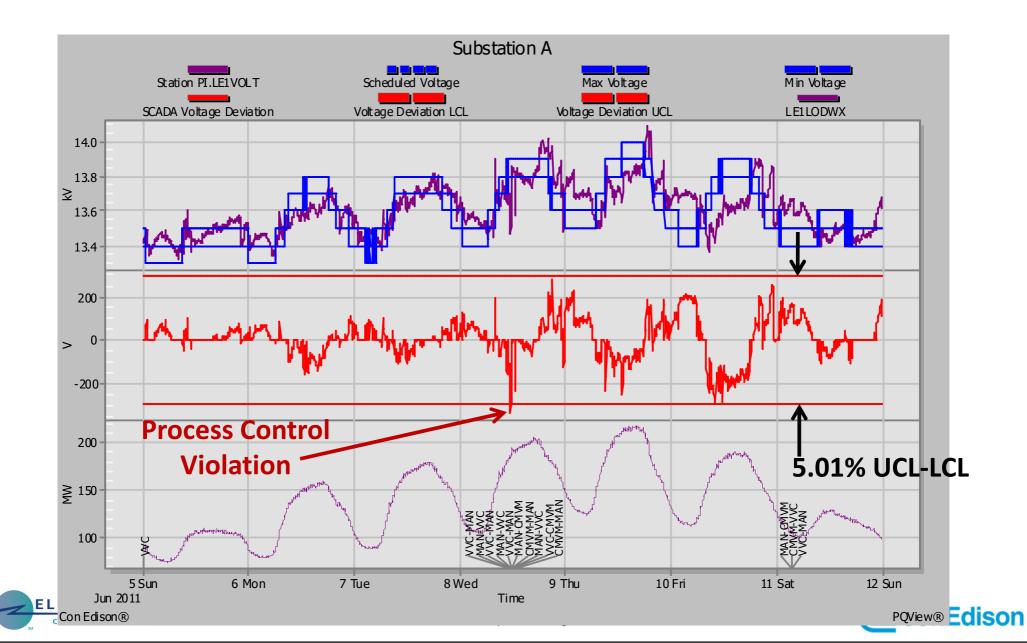
Num Lock 🖬 🖬 🏙 🕯

Area Substation Voltage Control

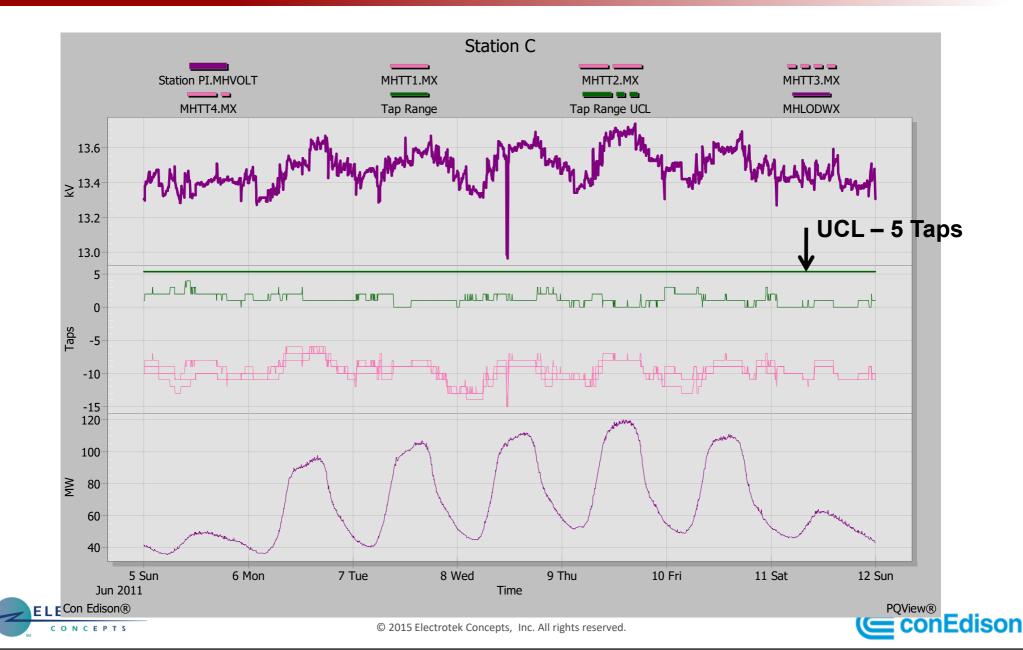
Voltage Control and Optimization

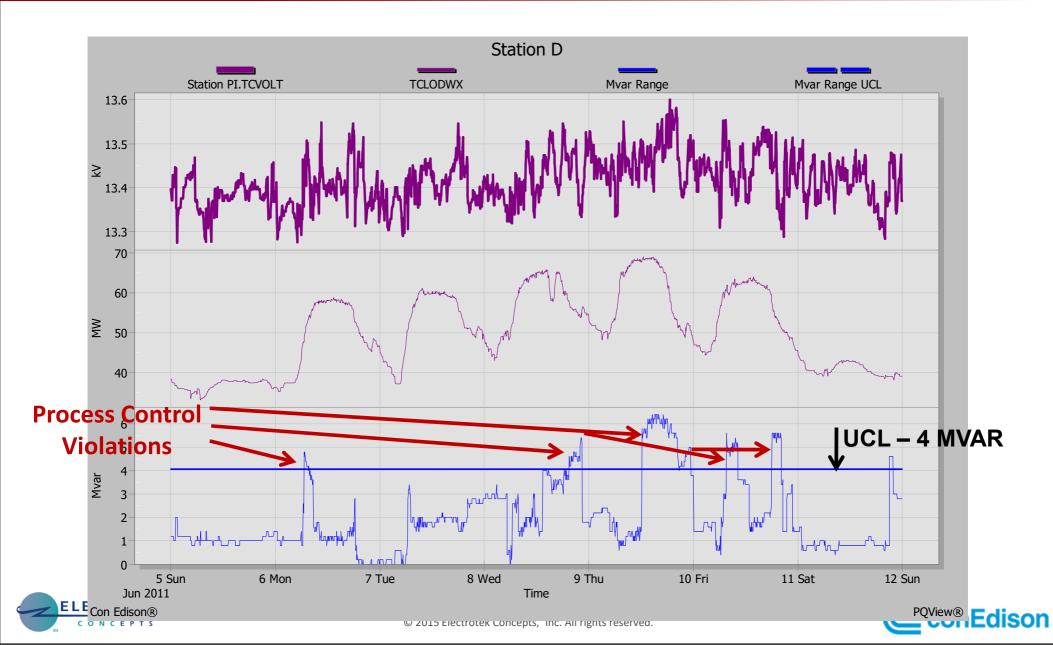
- Process Control Tool Development
 - Control Variables
 - Voltage Deviation from Schedule
 - Range of Tap positions on Parallel Transformers
 - Range of Mvar Load on Parallel Transformers
 - Apply control chart methods to develop upper and lower control limits

Simple Application of Statistical Process Control Methods


- Early each Monday morning, derive weekly average and standard deviation values for the control variables
- At the same time, create weekly summary reports for distribution via e-mail and on the company intranet
- When analyzing a week for statistical process control, derive upper control limit (UCL) and lower control limits (LCL) value that compare the average and standard deviation for the past week to the average and standard deviations of the eight weeks prior to the past week.

$$\begin{split} UCL_n &= \frac{Avg_{n-1} + Avg_{n-2} + ...Avg_{n-8}}{8} + 3\frac{StDev_{n-1} + StDev_{n-2} + ...StDev_{n-8}}{8} \\ LCL_n &= \frac{Avg_{n-1} + Avg_{n-2} + ...Avg_{n-8}}{8} - 3\frac{StDev_{n-1} + StDev_{n-2} + ...StDev_{n-8}}{8} \\ Avg &= \text{Weekly Average of Controlled Variable} \\ StDev &= \text{Weekly Average of Controlled Variable} \\ n &= \text{The week being analyzed} \end{split}$$


Voltage Deviation Control Chart


Tap Range Control Chart

Reactive Power Balance Control Chart

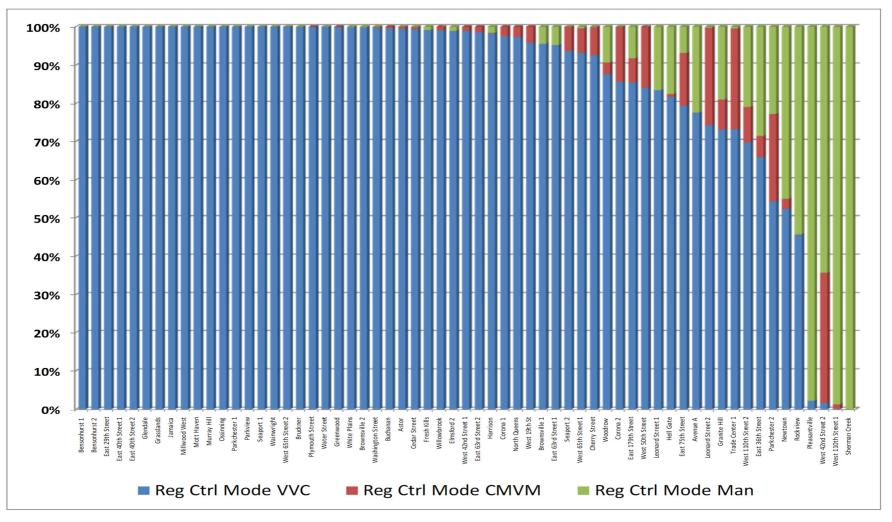
Power Factor Summary Weekly Report

ī	Station	Week	PF Min	PF Avg	PF Max	Weekday PF Min	Weekday PF Avg	Weekday PF Max	Weekend PF Min	Weekend PF Avg	Weekend PF Max	Leading PF Hours	Leading PF Avg	Service Hours Cap 1	Service Hours Cap 2	Service Hours Cap 3
	East 29th Street	07/11/2011	83.63%	97.49%	99.94%	93.20%	97.89%	99.94%	83.63%	96.48%	99.17%	0.00%		74.26%	71.38%	37.55%
	East 36th Street	07/11/2011	87.26%	96.65%	100.00%	87.26%	97.50%	100.00%	88.41%	94.59%	99.85%	1.39%	-99.82%	80.06%	57.24%	31.75%
	East 40th Street 1	07/11/2011	89.74%	97.73%	100.00%	89.74%	97.62%	100.00%	0.00%	97.85%	100.00%	5.26%	-99.86%	31.85%	62.40%	94.59%
	East 40th Street 2	07/11/2011	89.57%	96.90%	100.00%	89.87%	97.24%	100.00%	0.00%	95.99%	99.68%	40.28%	-99.58%	76.98%	62.75%	37.40%
	East 63rd Street 1	07/11/2011	89.92%	96.44%	99.99%	89.92%	95.55%	99.80%	96.44%	98.66%	99.99%	0.00%		85.32%	75.15%	0.00%
	East 63rd Street 2	07/11/2011	95.06%	98.09%	100.00%	95.06%	97.70%	100.00%	97.15%	99.16%	100.00%	5.85%	-99.98%	71.78%	0.00%	0.00%
	Hell Gate	07/11/2011	98.00%	99.55%	100.00%	98.00%	99.51%	100.00%	98.25%	99.63%	100.00%	12.60%	-99.85%	88.84%	90.87%	82.94%
	Murray Hill	07/11/2011	91.64%	94.84%	99.78%	91.73%	95.80%	99.78%	91.64%	92.44%	93.15%	0.00%		0.00%	0.00%	100.00%
	Parkview	07/11/2011	93.48%	96.54%	99.46%	93.57%	96.97%	99.46%	93.48%	95.46%	99.06%	0.00%		100.00%	0.00%	0.00%
	Plymouth Street	07/11/2011	93.15%	97.13%	100.00%	93.15%	97.20%	100.00%	93.49%	96.96%	99.75%	4.71%	-99.93%	55.36%	54.27%	38.64%
	Seaport 1	07/11/2011	91.60%	97.21%	100.00%	91.60%	97.18%	100.00%	92.55%	97.28%	99.41%	1.84%	-99.97%	89.29%	100.00%	100.00%
	Seaport 2	07/11/2011	89.19%	96.20%	100.00%	89.19%	95.51%	100.00%	90.20%	97.34%	99.98%	24.11%	-99.71%	45.44%	20.29%	64.73%
	Sherman Creek	07/11/2011	95.49%	99.21%	100.00%	97.82%	99.58%	100.00%	95.49%	98.20%	100.00%	7.59%	-99.98%	86.71%	89.19%	85.86%
	Trade Center 1	07/11/2011	91.90%	95.09%	100.00%	91.90%	95.31%	100.00%	92.27%	94.78%	99.01%	32.24%	-96.77%	100.00%	100.00%	79.37%

Tap Changer Summary Weekly Report

1	StationSPeC Weekly													-	
	Select Report: Select Week 8/1/2011 7/25/2011	Tap Changer Summary Select Station Granite Hill Grasslands	Station	Week	Tap Range Min	Tap Range Avg	Tap Range Max	Tap Min	Tap Max	Tap 1 Ops	Tap 2 Ops	Tap 3 Ops	Tap 4 Ops	Tap 5 Ops	
	7/18/2011	Greenwood	East 29th Street	07/11/2011	0	0.07	4	-16	-5	130	128	124	135	0	
	7/11/2011	Harrison	East 36th Street	07/11/2011	0	0.46	2	-16	-7	93	89	87	87	0	
	7/4/2011 6/27/2011	Hell Gate Damaica	East 40th Street 1	07/11/2011	0	0.59	3	-14	-3	112	112	115	119	0	
	6/20/2011	Leonard Street 1	East 40th Street 2	07/11/2011	0	1.06	7	-10	2	0			1		
	6/13/2011	Leonard Street 2	East 63rd Street 1	07/11/2011	0	9.45	21	-14	16	0	213	159	0	165	
	6/6/2011	Millwood West	East 63rd Street 2	07/11/2011	1	8.02	17	-12	9	0		1			
	5/30/2011	Mott Haven	Hell Gate	07/11/2011	0	2.50	13	-13	2	92	77	188	63	0	
	5/23/2011	Murray Hill	Murray Hill	07/11/2011	0	1.16	3	-13	-6	81	88	88	288		
	5/16/2011	Newtown	Parkview	07/11/2011	0	0.00	0	-15	-8	64	64	64	64		
	5/9/2011 5/2/2011	North Queens Ossinning	Plymouth Street	07/11/2011	0	0.48	7	-15	2	137	129	136	131	0	
	4/25/2011	Parkchester 1	Seaport 1	07/11/2011	1	4.59	6	-15	-1	114	100	107	114	0	
	4/18/2011	Parkchester 2	Seaport 2	07/11/2011	0	3.97	6	-16	-5	0					
	4/11/2011	Parkview	Sherman Creek	07/11/2011	0	3.83	15	-14	1			75	41	44	
	4/4/2011	Pleasantville	Trade Center 1	07/11/2011	0	2.68	9	-16	-6	65	61	78	135		
	3/28/2011	Plymouth Street Rockview Seaport 1 Seaport 2 Sherman Creek Trade Center 1													+

© 2015 Electrotek Concepts, Inc. All rights reserved.

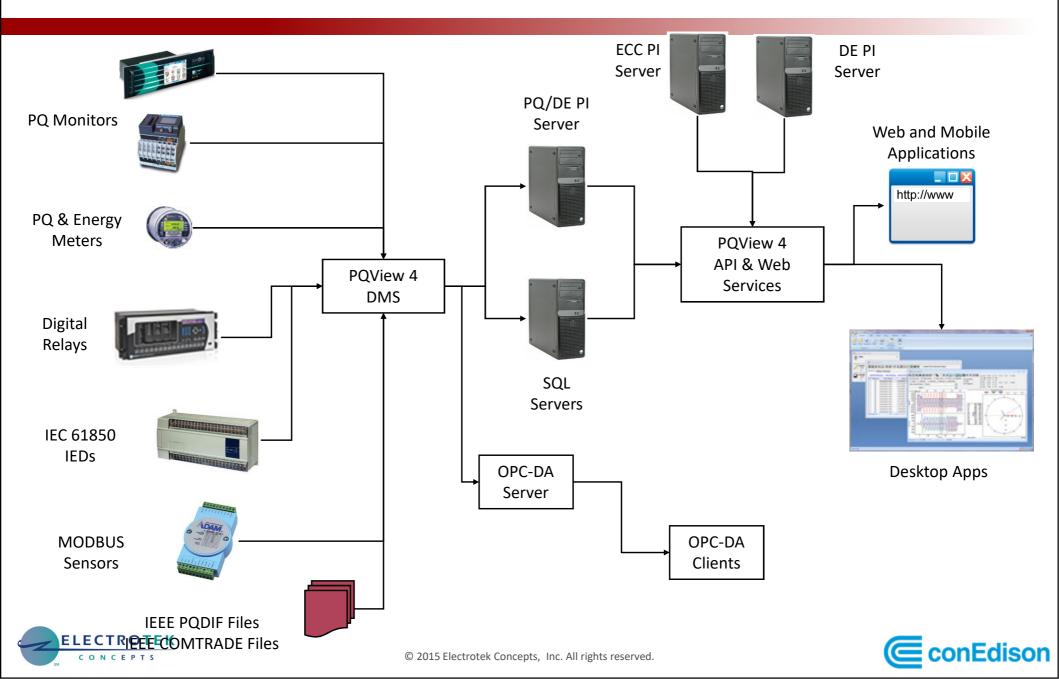

ECTROTEK

Area Substation Voltage Control Summary

LECTROTEK

ONCEPTS

 Regulation Control Mode Performance Across the Area Substation Population for One Week



What's Next at Con Edison? Increased Data Integration Functions in PQView 4

What's Next: Fault Location in Overhead Distribution System

- New power quality monitors installed in Queens as part of the American Recovery and Reinvestment Act
 - New monitors installed to complete a pilot project on overhead fault location with a primary goal to locate problem line sections or equipment after measuring momentary faults
- Radial feeder models from integrated from on company modeling software in 2013
- SCADA correlation added in January 2014
- Both resistance-to-fault and reactance-to-fault will be explored
- The project includes display of the feeders using aerial imagery with one-line feeder overlays

What's Next for Area Substation for Fault Location

- New Firmware for Monitor to Compute/Trigger on Negative-Sequence Current internally
- Automation of Subcycle/Incipient Fault Location Estimation

For more information:

Brian Todd btodd@Electrotek.com

Kevin Kitteridge <u>kkitteridge@Electrotek.com</u>

