

HIMTON BRISING STOLLAR

Modeling and Control of Photovoltaic Grid Connected Inverter Based on Nonlinear System Identification for Power Quality Analysis

Dr. Nopporn Patcharaprakiti Rajamangala University of Technology Lanna Chiangrai 19 May 2014

PQSynergy 16 May 2014

TOPIC

- INTRODUCTION
- MATHEMATICAL MODELING
- NONLINEAR SYSTEM IDENTIFICATION
- CASE STUDY WITH PV INVERTER
- POWER QUALITY ANALYSIS
- MODELING APPLICATION
- **CONCLUSION**

Mathematical Modeling of system

Method for system Modeling

- Analytical (Theory & Circuit)
- Experimental (System Identification)

Grid connected Inverter of PV

Inverter Configuration

Voltage source Inverter

PV Inverter

Power Quality Inc. Comparison advantage/disadvantage of three approach Impedance Polar plot Impedance modeling (Equivalent circuit) Impedance real-imagine plot Z (Impedance) Zs Idc (Vary frequency) Im RMUT Vac Vdc Zp Re - Impedance measurement Zdc(t) = Vdc(t) / Idc(t)- Impedance Caculation Zac(t) = Vac(t) / Iac(t)Π Synthesis approach - Input & Output Impedance (Small&Large signal) - Inverter Impedance - Harmonic Impedance Vgrid (t) Vdc (t) PCC Idc (t) Vac (t) Inverter Solar Cell (MPPT & power quality & protection) Iac (t) Igrid (t) Vload (t) Iload (t) $Pdc(t) = Vdc(t) \times Idc(t)$ $Pac(t) = Vac(t) \times Iac(t)$ LOAD Analysis Approach System Identification Ш Know Power circuit (Linear & Nonlinear) Test Condition Resistive Load & Control circuit 1.Input Change Capasitive Load voltage modeling State space averaging Inductive Load current modeling 2. Load Change power modeling Signal flow graph Nonlinear Load 3. Islanding detection using Impedance modeling Bond graph theory system identification Linear Tool Analysis Simulation and Prediction Mathematical Equation Nonlinear Analysis x(t + Ts) = Ax(t) + Bu(t) + Ke(t)Best fits 98.05% Function Analysis y(t) = Cx(t) + Du(t) + e(t)Chaos $\frac{B(q)}{D(r)} u(t) + e(t)$ Bifurcation y(t) =- Irreveribility

System Identification

Type of System Identification

Discrete Time Linear Model

_	e(t)	Model Structure	Discrete Time Form
		ARX	nu
	C(a)/D(a)		$A(q)y(t) = \sum_{i=1}^{n} B_i(q)u_i(t - nk_i) + e(t)$
		ARMAX	$M(x) = (4) \qquad \sum_{n=1}^{n_{u}} B(x) = (4 - x^{\frac{1}{2}}) = C(x) = (4)$
u(nk)			$A(q)y(t) = \sum_{i=1}^{n} B_i(q)u_i(t - n\kappa_i) + C(q)e(t)$
u(t) - B(q)/F(q)	+ A(t) y(t)	Box-Jenkins (BJ)	$y(t) = \sum_{i=1}^{nu} \frac{B_i(q)}{F_i(q)} u_i(t - nk_i) + \frac{C(q)}{D(q)} e(t)$
\square $u(t) = input$		Output Error (OE)	$y(t) = \sum_{i=1}^{nu} \frac{B_i(q)}{F_i(q)} u_i(t - nk_i) + e(t)$

- y(t) output
- $\bullet e(t)-error$
- A(q),B(q),C(q),D(q),E(q) Coefficient
- q —shift operator

Nonlinear System Identification Input Output Output Linear Nonlinear Nonlinear Linear Weiner Model Hammerstein Model Output Input Output Input Nonlinear Nonlinear Linear Linear Nonlinear Linear Hammerstein-Weiner Model Weiner-Hammerstein Model Nonlinear Input Output Regressor Output Linear

Nonlinear Auto Regressive with exogenous Model

Nonlinear block (Nonlinear Estimator)

Wavelet Network (Wavenet Nonlinear Estimator : WN) 💠

Wavelet Transform

$$y = (u-r)PL + \sum_{i}^{n} as_{i} * f(bs(u-r)Q + cs) + \sum_{i}^{n} aw_{i} * g(bw_{i}(u-r)Q + cw_{i}) + d$$

Neural Network (Sigmoid Network : SN)

Power
Quality Inc.Criteria for Model SelectionAccuracy
$$fit = 100 * (1 - norm(y^* - y) / norm(y - y))$$
highestFinal Prediction Error $FPE = V \left(\frac{1 + \frac{d}{N}}{1 - \frac{d}{N}} \right)$ Loss Function $V = det \left(\frac{1}{N} \sum_{1}^{N} \varepsilon(t, \theta_N) (\varepsilon(t, \theta_N))^T \right)$ highest •Akaikae's Information Criteria $AIC = \log V + \frac{2d}{N}$

lowest order

*number of pole(nb) plus zero(nf)*rder calculate •

Research Methodology

Testing inverter

TECHNICAL DETAILS.

It goes without saying that every FRONIUS IG complies with all the obligatory guidelines and standards of each country. More in-depth information and certificates may be viewed at www.fronius.com under "downloads". Of course, all FRONIUS IG bear the €€ mark.

FRONIUS IG	15	20	30	40	60 HV		
16	0 - 400 V	150 - 400 V	150 - 400 V	150 - 400 V	150 - 400 V		
)	500 V	500 V	500 V	500 V	530 V		
1300	- 2000 Wp	1800 - 2700 Wp	2500 - 3800 Wp	3500 - 5500 Wp	4600 - 6700 Wp		
	1300 W	1800 W	2500 W	3500 W	4600 W		
	1500 W	2000 W	2650 W	4100 W	5000 W		
	94.2 %	94.3 %	94.3 %	94.3 %	94.3 %		
	91.4 %	92,3 %	92.7 %	93.5 %	93.5 %		
			230 V / 50 Hz (60 Hz)				
	366 x 344	x 220 mm (600 x 435	x 225 mm) 610 x 344	x 220 mm (733 x 435	x 225 mm)		
		9 kg (12 kg)		16 kg (20 kg)			
	controlled forced-air cooling						
	designer internal housing; optional outer housing						
			-20 50 °C				
	FRONIUS IG 18) 1800	FRONIUS IG 15 150-400 V) 600 V 1300-2000 Wp 1300 W 1500 W 942 % 91.4 % 386 x 344	FRONIUS /G 15 20 150 - 400 V 150 - 400 V) 500 V 500 V 1300 - 2000 Wp 1800 - 2700 Wp 1300 W 1900 W 1500 W 2000 W 942 % 943 % 91.4 % 92.3 % 386 x 344 x 220 mm (500 x 435 9 kg (12 kg) col designer in	FRONIUS IG 15 20 30 150 - 400 V 150 - 400 V 150 - 400 V 150 - 400 V 0 500 V 500 V 500 V 1300 - 2000 Wp 1800 - 2700 Wp 2500 W 1500 W 1800 W 2500 W 1500 W 2000 W 2650 W 912 % 943 % 943 % 914 % 923 % 927 % 230 V / 50 Hz (60 Hz) 266 x 344 x 220 mm (500 x 435 x 225 mm) 610 x 344 9 kg (12 kg) controlled forced-air cool designer internal housing: option -20 50 °C	FRONIUS IG 15 20 30 40 150 + 400 V 300 V 800 V 800 V 800 V 800 V 800 V 1300 - 2000 Wp 1800 - 2700 Wp 2500 - 3800 Wp 3500 - 5500 Wp 1800 W 1300 W 1800 W 2500 W 3500 W 3500 W 400 W 150 W 2000 W 2850 W 4100 W 400 W 400 W 400 W 94.2 % 94.3 % 94.3 % 94.3 % 94.3 % 93.5 % 230 V / 50 Hz (60 Hz) 230 V / 50 Hz (60 Hz) 250 Wm (500 x 425 x 225 mm) 610 x 344 x 220 mm (733 x 425 Mz 425 Mz 420 mm (733 x 425 Mz 420 mz 4		

Leonics Apollo G300 5000 W

APOLLO G-300

LEONICS

RMUTI

GRID CONNECTED INVERTER

· Pure sine wave power output

- Peak efficiency > 91% (include isolation transformer)
- Low Harmonic Distortion (THDi) less than 4%
- · Main and solar generator are galvanically isolated
- Built-in Maximum Power Point Tracking (MPPT)
- Microprocessor control
- Advanced IGBT Technology
- . Islanding protections during failure of utility grid power supply
- . Fully automatic self-START in the morning and

LEONICS.

APOLLO G-300 series GRIDCONNECTED INVERTER

MODEL	Wall Mount type	G+303	G+304	G-304M2	G-305		
	Rack Mount type*	G-303/RM	G-304/RM	G-304 M2/RM	G-305/RM		
RATED POWER	PV eput	2.8 KWp	3.9 kWs	4.7 kWs	5.6 KWa		
	AC output	2.5 KW	3.5 KW	4.2 KW	5 KW		
SYSTEM	Controller		intelligent with merce	computer controlled			
	Technology		IGBT tech	mology			
C INPUT	Operating votage range		165-3	00 V 50			
	Max alewabe votage		至0	V			
	(for shot periodol time)						
GRIC LINE	Votage and phase	- 10%, -11 200 - 240 Va 209 - 240 Va	PL for 220 Vac and 230 Vac (single phase) (200 - 253 Vac dr 240 Vac (singlephase) c dr 220 Vac (singlephase) according to sta for 230 Vac (single phase) according to sta	according to standards o fEC 61727 and IEC a) according to standards of AS 4777 indards of IEC 61727 and IEC 62116 (for PE indards of IEC 61727 and IEC 62116 (for ME	62116 A grid Ine) A grid Ine)		
	Frequency	48 - 51 Hzfor 2	50 / 60 Hz =0.5 Hz for 50 /60 Hz = 0.6 10 Vac and 230 Vac according to sandards	220 Vac and 230 Vac Hizfor 240 Vac of IEC 61727 and IEC 82116 (for PEAand M	EA ord ine)		
ACOUTPUT	Powerfector		more the	80.0nc			
	Total harmonic distortion		total eas than 4% a	each èas than 3%			
	Current imiting		=0	*			
BOLATION	Galvanic isolation		ve				
FFICIENCY	Peak efficiency		more the	091%			
IDNTROL		automatic opolino 4/ms / MPPT control. Junity power 4/dor control					
PROTECTION	Input / Ougut		over voltage / under voltage ((AC & DC) (requency (AC)			
	latending	votage and phase shift detection					
	Over heat		esto ehudowne	nd auto restart			
	Surge energy dissbation		280 Joues 10 /1,000	mérosec veve form			
NOICATOR	LED		Main, Opera	ting, Alarm			
	LCD diaplay		DC /AC voltage, Current/Watt,7	bday kWh, Accumulated kWh,			
			Calendar, Céck, Con	dition setting Fault			
AJDIABLE ALARM	Mutiple tone sound		maña faiore, éverte	r faut (inhibiable)			
	with reset for elence						
COMMUNICATION	DB-9 connector		R6-232 serial	Iterface port			
NTERFACE	RS-485 Adeptor		RS-485 interfu	sce (option)			
ACOUSTIC NOISE	A ti metre		leasthan	50 dBA			
ENVIRONMENT	Temperature		0-4	5'0			
	Humidity		0-95 % (non -	condensing)			
DMENSION	Wall mount case	37.5×49×22.9	37.5 x 49 x 22.9	43.9 x 52 x 28	439 x 52 x 28		
(W x H x D) # on.	Rack mount case	48.2 x 19.8 x47	48.2 x 19.6 x 47	48.2 x 22 x 49.7	48.2 × 22 × 49.7		
WEIGHT # kg.	Wal mount case	24	24	31	31		
approximate)	Rack mount case	23	23	26	26		
DEBIGN REGULATION	Tested eccording to		AS 4777, AS 3100, IEC	61727 and IEC62116			

27, 29 Bol Bargha-Thad Rd St, Bargha, Bangha, Banghak 10280 THALANO Tai 0-2748-4500, 0-27468708 Fax: 0-2748-8712 e-mail: RNE@laorics.com • www.leonics.com •

Using System Identification Toolbox in MATLAB

MATLAB 7.6.0 (R2008a)			l.	. 6
File Edit Text Go Cell Tools Debug	Parallel Desktop Window Help			
12 46 ッ 10 日本 10 11 11 11 11 11 11 11 11 11 11 11 11	Current Directory: C:\Documents and Settings\NOPPORNIMy Documents\MATLA	B 💌 😢		
Shortcuts 🕐 How to Add 💽 What's New				
Workspace ** • * ×	Editor - C: Program Files WATLAB \R2008a \work \voltgrid connected loc	.m	-11	0
	Della b b c c b c b b b b b b b	a di fin int in till sark	Base M	×
Mana - Vaha		the second second second		
100				
	1 - clear;			
	A - Mde = wiewead/invint 022 wiel 1 (22)2100211			
	<pre>S = Vac = xlsread('print 032.xls', 1, 'E3:E1002');</pre>			
	6 - Idc = xlaread('print 032,xla', 1, 'C3:C1002');			
	7 - Iac = xlsread('print 032,xls', 1, 'F3:F1002');			
	8 - plot(1:1000,Vdc);axis([0 1000 0 300]);			
	9 - xlabel('number of data');ylabel('Vdc(V)')			
	<pre>10 - plot(1:1000,Idc);axis([0 1000 0 10]);</pre>			
	<pre>11 = xlabel('number of data');ylabel('Idc(A)')</pre>			
	<pre>12 - plot(1:1000,Vac);axis([0 1000 -400 400]);</pre>			
	13 - xlabel('number of data');ylabel('Vac(V)')			
< >	14 - plot(1:1000, Iac); axis([0 1000 -8 8]);			
Command History	<pre>15 = xlabel('number of data');ylabel('lac(A)')</pre>			
zpk sys = zpk(Im);	10			
zpk sys = zpk(lm)	1/	- III stat skonssonskites av	101 and a table to a second	
[z p k] = zpk(1m)	sincervariant private and a power grade medical medical and a variable of the second	the procent angle condition in	 Corrency occurred 	cool
-doc zpk	Command Window		+1	
[z p k] = zpkdata(lm)	>>			
-[z, p, k, dz, dp, dk] = zp				
-zero(1m)				
pole(lm)				
pzmap(lm)				
-[p z] = pzmap(lm)				
-[p z] = pzmap(lm)				
[z p k] = zpkdata(lm)				
-p				
9/9/11 8:51 AM				
	1			
< >				

Toolbox

M-file

simulink

Topic for Experimental and Modeling

- Modeling System in Steady state
- Modeling System in Transient
- Modeling System in Islanding
- Modeling System with cross validation
- Modeling with MIMO model

Modeling and Condition from Experimental

		F
Type of Modeling	Parameter	Condition
Linear Modeling		
Auto Regressive with Exogenous,	SISO	Steady state
Auto Regressive Moving Average with Exogenous	SISO	Steady state
Box-Jenkins (BJ)	SISO	Steady state
Output error (OE)	SISO	Steady state
Nonlinear Modeling		
Nonlinear Autoregressive with Exogenous	SISO	Steady state
Hammerstein	SISO	Steady state
Wiener	SISO	Steady state
Hammerstein-Wiener	SISO	Steady state

Three Way Data Splits

Three-way data splits

Modeling and Simulation in Steady State

Data divide into estimate and validate data

The experiment and simulated model output

Т

Result of Modeling

6

Model		Linea	r Polynon	nial Param	eters	% fit	FPE	AIC		
	a _n	b _n	c _n	d _n	f _n	k _n				
Arx	10	10	_	_	-	9	26.49	3,292	8.09	
Armax	5	1	3	-	-	3	92.03	2,584	7.85	
BJ	-	5	5 ·	1	3	1	92.82	2,655	7.88	
OE	-	3	_	-	3	5	93.56	2,910	7.97	

Model	Nonlinear			Linear		Μ	lodel properties	lel properties	
			a _n	b _n	k _n	% fit	FPE	AIC	
NARX	-	WN	9	1	9	81.02	5,012	8.51	
	-	SN	10	7	8	81.01	4,086	8.30	
Model	Nonlinear			Linear		Model properties			
	I/P	O/P	b _n	f _n	k _n	% fit	FPE	AIC	
Hammerstein	SN	-	3	3	1	92.79	4,022	9.54	
	WN	-	3	3	1	92.88	3,037	9.47	
Wiener	-	SN	2	5	0	53.86	3,790	11.86	
	-	WN	4	2	2	61.03	3,013	10.28	
Hammerstein-	SN	SN	4	2	2	93.75	3,323	7.06	
Wiener	WN	WN	1	3	2	93.91	2,670	7.54	

Compare Linear and Nonlinear Model

- Accuracy of Hammerstein-Wiener and Hammerstein Model more than Linear model
- Model order of Nonlinear Hammerstein-Wiener and Hammerstein
 Model lower than linear Model
- Accuracy of Linear system identification lower than Nonlinear model
- Model order of linear higher than nonlinear system identification

Result of Hammerstein-Wiener model

Data	Input/Output Nonlinear	Nb	nf	nk	Model order	% fit	FPE	A
	Deadzone	1	5	1	5	87.23	3,079.8	10.
-	Saturation	4	5	2	0	02.54	729.03	6.:
Voltage	Pwlinear	1	2	2	2	98.05	26.27	3.2
	Sigmoid	3	2	2	4	93.75	3,323	7.0
	Wavenet	1	3	2	3	98.01	2,670	7.5
	Deadzone	3	8	2	10	91.76	0.07	2.5
	Saturation	3	4	2	6	95.02	0.23	2.9
Current	Pwlinear	4	6	7	У	94.31	0.05	1.:
	Wavenet	9	17	2	25	93.22	19.08	15.
	Sigmoidnet	5	8	3	12	91.68	25.61	18.
	Deadzone	3	7	5	9	91.05	8,688.3	9.0
	Saturation	6	4	1	9	92.28	1,262.7	9.4
Power	Pwlinear	8	6	2	13	92.32	3,263	8.0
	Sigmoidnet	4	9	3	12	02.82	8,480	6,0
	Wavenet	5	7	2	11	93.62	2008	14

Input nonlinear

Discrete polynomial model

Output nonlinear

Properties	Input Nonlinear	Output Nonlinear
Regressor Mean	0.0052	-9.61 x 10 ⁻¹⁷
NonLinear Subspace	1	1
Lin <mark>ear Subspa</mark> ce	1	1
Linear Coef	-0.1387	-6.1046
Dilation	[1x10 double*]	[1x10 double]
Translation	[1x10 double]	[1x10 double]
Output Coef	[10x1 double]	[10x1 double]
Output Offset	-0.0527	1.1208

Sigmoidnet

Properties	Input Nonlinear	Output Nonlinear	
Number of Unit	6	11	
Regressor Mean	- 8.5126	-98.55	
Nonlinear Subspace	0.0056	4.58e-4	
Linear Subspace	0.0056	4.58e-4	
Output Offset	-7.0973	-0.4855	
Linear Coef	176.51	3.1140	
Scaling Coef	[0x1 double*]	[3x1 double]	
Wavelet Coef	[6x1 double]	[8x1 double]	
Scaling Dilation	[0x1 double]	[3x1 double]	
Wavelet Dilation	[6x1 double]	[8x1 double]	
Scaling Translation	[0x1 double]	[3x1 double]	
Wavelet Translation	[6x1 double]	[8x1 double]	

State space equation x(t + Ts) = Ax(t) + Bu(t) y(t) = Cx(t) + Du(t) $A = \begin{bmatrix} 1.99 & 1 & -1.486e - 5 \\ -0.99 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $B = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$ $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ $D = \begin{bmatrix} 0 & 12.99 \end{bmatrix}$

Transfer function $G(z) = \frac{-1.486e - 5}{z^2 - 1.999z + 0.996}$

Gain =
$$-1.486e-5$$
 zero = 0 pole = $0.997-0.0159i$
= $0.997+0.0159i$

$$B(q) = 1.025q^{-5} - 1.635q^{-6} + 0.1838q^{-7} + 0.4257q^{-8}$$

$$F(q) = 1 - 2.396q^{-1} + 1.794q^{-2} - 0.3979q^{-3}$$

$$G(z) = \frac{1.025z^3 - 1.635z^2 + 0.183z + 0.425}{z^8 - 2.395z^7 + 1.794z^6 - 0.397z^5}$$

Graphical Tool for analysis

Peak gain Value 6.87 dB at frequency 0.317 rad/sec

- Gain Margin 2 value 24.6 dB at frequency 0 rad/sec and 109 dB at frequency 62.8 rad/sec
- Phase Margin -27.1 at frequency 0.309 rad/sec

- rise time, tr 3.25 Second
- peak time, tp 9.95 Second Maximum 0.116
- maximum overshoot 95.9%
- settling time, ts 912 Second and final magnitude 0.059

Amplitude -0.000915 at time 4.95 and steady state time 917 second

- Peak gain = 6.87 dB at frequency 0.317 rad/s
- Gain margin 2 values are 24.6 dB at frequency 0 rad/sec and 109 dB at frequency 62.8 rad/sec
- Phase margin 2 values are -27.1 degree at frequency 0.309 rad/sec and -153 degree at frequency
 0.325 rad/sec

Nichols plot

Pole zero map

- Pole Position at 1-0.0159i and Zero Position at 1+0.0159i
- damping 0.0134, overshoot 95.9% at frequency 0.317 rad/sec
- Stability Analysis found that pole position locate in unit circle

Linear system Stability analysis

Nonlinear → Linear

- Linearization around operating point
- Steady State condition
- Stability analysis

Linear system Stability analysis

- Right hand plane (RHP)
- Root locus, Routh Hurwitz criterion
- Z plane and Unit circle
- Eigenvalue of Jacobian matrix
- Lyapunov
- Bode-Nyquist stability criterion

Bode-Nyquist stability criterion

SISO Stability Criterion

 $1 \approx 0 \text{ dB} < \text{GM} < 4 \approx 12 \text{ dB}$ and 30 < PM < 60

 $Pm = 180 + \arg L(e^{j\omega})$

$$Gm = \frac{1}{|L(e^{j\omega cp})|} = \frac{1}{|Re(e^{j\omega})|}$$

- Modeling System in Steady state
- Modeling System in Transient
- Modeling System in Islanding
- Modeling System with cross validation
- Modeling with MIMO model

Experimental for Transient Condition

Electrical parameter	Step	Up	Step Down		
AC Voltage output (V)	220	220	220	220	
AC Current output (A)	7	2	2	7	
AC Power output (W)	1540	440	440	1540	

Model properties and comparison of waveform

Step Up Condition

Nonlinear	Linear Parameters			Model Properties			
I/P & O/P	nb	nf	nk	model	% fit	FPE	AIC
Deadzone	3	4	2	6	91.75	3,230	7.40
Saturation	4	3	2	6	83.46	3256	11.34
Pwlinear	4	4	5	7	87.20	4720	8.38
Sigmoidnet	3	5	5	7	83.85	4238	8.43
Wavenet	4	5	2	8	84.57	2980	9.52

Model properties and comparison of waveform

Step Down Condition

Nonlinear	Linear Parameter s			Model Properties			
I/P & O/P	nb	nf	nk	model	% fit	FPE	AIC
Deadzone	4	5	5	8	85.12	9,718	9.18
Saturation	3	5	5	7	81.29	3049	11.23
Pwlinear	3	4	3	6	85.99	3233	10.0
Sigmoidnet	4	4	1	7	81.17	4426	8.28
Wavenet	4	5	4	8	82.45	3325	9.25

Simulation Result for Transient

Step up condition

Stability Analysis

Stability : consider from pole position, magnitude of pole and unit cirle•

Pole 4 position follow as

0.9923 + 0.0575i, 0.9923 - 0.0575i, 0.7060 and -0.1213

Magnitude are 0.9940, 0.9940, 0.7060 and 0.1213•

Magnitude of pole < 1 All Pole locate in unit circle

: System is stable

Linear Stability analysis

Linear Stability analysis

Criteria	Condition	Result	Stability
Gain Margin (GM)	0 < GM < 4	0.679 dB	Stable
Phase Margin (PM)	30 < PM < 60	31.8	Stable

Absolute stability analysis

Criteria	Result
Rise Time	5.2 sec
Settling Time	206 sec
Overshoot	95.9%

Step Response

Time (sec)

Topic for Experimental and Modeling

- Modeling System in Steady state
- Modeling System in Transient
- Modeling System in Islanding
- Modeling with MIMO model

Modeling of Islanding condition

Design Simulation in Six Condition of Islanding

No	Model input	P _{inverter}	P _{load}	P _{grid}	Load
		(W)	(W)	(W)	
Ι	Grid current	1,000	800	-200*	R
II	Grid current	1,200	1,000	200	R
III	Grid current	1,000	1,000	-	RLC
IV	PCC voltage	1,000	800	-200	R
V	PCC voltage	1,200	1,000	200	R
VI	PCC voltage	1,000	1,000	-	RLC

* sign (-) mean grid current energize power into the load

Simulation Result in condition 1 and 6

scenario I

scenario VI

Topic for Experimental and Modeling

- Modeling System in Steady state
- Modeling System in Transient
- Modeling System in Islanding
- Modeling with MIMO model

MIMO (Multi Input Multi Output) Model

Single input single output (SISO) model

= 3x n = 3x 1 = 3

Multiple input multiple output (MIMO) model

= 3x n = 3x4 = 12

Structure of Model

Single input multiple output (SIMO) model

= 3 x n = 3 x 2 = 6

Multiple input single output (MISO) model

 $= 3 \times n = 3 \times 2 = 6$

Number of linear parameter (nb nf nk) = 3x n ; n = submodel

Result of MIMO Model

Туре	I/P	O/P	Linear [nb];[nf] [nk];	%fit	FPE	AIC
MISO	DZ	DZ	[2 4]; [6 3]; [4 4]	92.60	63,034	11.35
MISO	ST	ST	[2 2]; [2 3]; [3 3]	89.06	31,559	10.35
SIMO	DZ	DZ	[4 4]; [3 2]; [3 2]	85.84 85.22	155.45	5.04
	ST	ST	[3 4]; [5 2]; [2 2]	95.12 91.23	27.71	3.32
MIMO	DZ	DZ	[4 4 3 5]; [5 5 3 6]; [3 4 4 2]	87.34 84.15	254.45	7.89
	ST	ST	[3 5 4 5]; [4 5 4 3]; [4 4 4 2]	97.03 91.70	175.43	6.35

Simulation and Experimental for Power Quality Analysis

Model output

Total Harmonic Distortion output

RMUT

Power Quality Analysis in Steady State and Transient Condition

	Steady sta	te FVHC condi	tion	Transient step down condition			
Parameter	Experimental	Modeling	% Error	Experimental	Modeling	% Error	
Vrms (V)	218.31	218.04	0.12	217.64	218.20	-0.26	
Irms (A)	23.10	23.21	-0.48	4.47	4.45	0.45	
Frequency (Hz)	50	50	0.00	50.00	50.00	0.00	
Power Factor	0.99	0.99	0.00	0.99	0.99	0.00	
THDv (%)	1.15	1.2	-4.35	1.18	1.24	-5.08	
THDi (%)	3.25	3.12	4.00	3.53	3.68	-4.25	
S (VA)	5044.38	5060.7	-0.32	972.85	970.99	0.19	
P (W)	4993.94	5010.1	-0.32	963.12	961.28	0.19	
Q (Var)	711.59	713.85	-0.32	137.24	136.97	0.19	
V p.u.	0.99	0.99	0.00	0.98	0.99	-1.02	

Model Application and Future Research

- Recursive system identification Kalman filtering_
- Model predictive control
- Model order reduction Robust control
- Power Quality Analysis from Modeling
- Voltage Stability Analysis from Modeling
- Load flow and penetration analysis from Modeling_

Increase accuracy and Real time modeling

Control base on Modeling

Power Quality Issue from Modeling

Conclusion

- A model of a PV inverter has been experimentally obtained from the Nonlinear Hammerstein-Wiener method.
- The model consists of three parts, static input and output parts, and dynamic middle part.
- The obtained model is validated and compared with the experimental results.
- The dynamic stability behavior of the system has been analyzed through the linearized version of the system using a frequency response analysis.
- Power Quality Analysis of output system can be done by using modeling and standard

PQ Synergy 2014 19 May 2012

Thank you for you attention

