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Background & Expected Results

* Rise of EV adoption — higher stress on distribution grids
* EV charging = nonlinear, fluctuating loads
* Direct impact on Power Quality (PQ)

The growing integration of EV loads into distribution networks

has introduced a range of power quality disturbances, including

voltage sags, swells, harmonics, and flicker. These disruptions

pose significant risks to grid stability and operational efficiency.
This study investigates the application ML techniques for
classifying PQ disturbances. Two algorithms, SVM and k-NN are

evaluated for their accuracy, robustness, and reliability. Results
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demonstrate that while both models are effective in detecting PQ

anomalies, SVM consistently delivers superior performance in

terms of precision and stability, making it the more suitable

choice for addressing PQ challenges in the IEEE 5-Bus system. . . . .
Representation of the experimental setup with measurement points.

Credit: Interaction among Multiple Electric Vehicle Chargers: Measurements on Harmonics and Power Quality Issues



Power Quality Challenges

* Transients
e Short-circuits &

* Voltage sag & swell
 Harmonics
 Flicker
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Beyond academic exploration, this research forms part of a
SaaS framework designed to enhance smart grid resilience. The
proposed system leverages Al models built on ML algorithms
to automatically detect and issue real-time alerts when PQ
disturbances arise from EV loads. This approach supports
proactive grid management, enabling utilities and stakeholders
to mitigate risks, maintain service quality, and improve the
overall reliability of future EV-integrated power systems.

Impacts of EVs
on power system
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Why Machine Learning?

* Hardware-based fixes = reactive
* ML allows proactive PQ event detection
* Enables real-time classification and early mitigation.
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Feature Extraction Stage

With the rising penetration of EVs, electrical distribution systems are becoming increasingly complex, rendering
traditional PQ management methods inadequate. Conventional approaches, such as passive filters or voltage regulators,
are largely reactive in nature and lack the flexibility to cope with rapidly changing load dynamics. This has created a
demand for intelligent, real-time solutions capable of monitoring, detecting, and mitigating PQ disturbances more
effectively. ML offers a promising pathway, as its algorithms can process large volumes of data, identify patterns within
intricate electrical signals, and accurately classify PQ disturbances according to their type and severity.



Research Objectives

* Simulate PQ disturbances in EV-integrated networks
 Build labeled dataset of PQ events
* Compare ML models: SVM vs k-NN

 Evaluate performance across metrics
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Simulation Environment

* Program Language: Python e &% oot
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Problems formulations: Data Preparation

* Features: Voltage, Current, PF, Frequency, THD, Event Duration
« Samples: ~5,000 instances. Labeled by PQ event type (sag, swell, harmonics, etc.)

9 50000 5000.0 50000  -0.001698  0.449438 0.451136
10 55000 55000 55000  -0.001708 0337079 0338787

11 60000 60000 G000  -0.001701 0404494 0.406195
12 6500.0 65000 65000  -0.001700  0.4044%4 0.406195
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Machine Learning Algorithms

Types of machine learning

I Supervised learning: Learn a model F from pairs of (x,y)

2. Unsupervised learning: Discover the hidden structure in unlabeled data x (no y)

3. Reinforcement learning: Train an agent to take appropriate actions in an environment by maximizing rewards.

SVM: RBF kernel, tuned C & vy

sciiicleacn k-NN: Euclidean distance, parameter k chosen experimentally

algorithm cheat-sheet

classification -

Logistidregression/ Linear SVM /
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Note: treat 100k, 10k samples as a guideline.
These numbers can go bigger or smaller depending on
feature dimension and number of classes.




Machine Learning Algorithms

Which cluster?

Nearest Neighbour classification LN
2 "%

Find the closest training data, assign the same label as the training data

> >

Which cluster? Given query data. For every point in the training data

=&

. Y
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A | N

. 4 Nearest Neighbour is susceptible to noise in the training data

A : o
: ki 3 “1 Use a voting scheme instead Distance (Similarity) Measure
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N For every point in the training data. Compute
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SVM Model Workflow

Common question: how do we ensure an ‘optimal” hyperplane?

SVM are supervised machine learning algorithms widely applied in classification problems, particularly
_ effective in cases, where data exhibit nonlinear separability. The core principle of SVM is to identify an
wialdaa optimal hyperplane that maximizes the margin between distinct classes within a feature space. By utilizing

1 kernel functions—such as linear, polynomial, or radial basis function (RBF)—SVM can transform input
‘Dm S data into higher-dimensional spaces, enabling the separation of complex, nonlinearly distributed patterns.
Preprocessing
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SVM in PQ
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* RBF kernel maps data into higher dimensions
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IEEE 5-Bus Test System

* 5-bus standard distribution model I s ,f’-\ el s
: X
G
* 1 slack bus, 2 PV buses, 2 PQ buses p uma| 22 nm s | P
attribut Li atiributes e
* 100 MVA base system i 2 e
. oqg e . o us Dl Bus lel:'ueirli{?r
* Widely used for stability & PQ studies i wabies 1 Goinelg

Bus 4 ( Bus No Bus Voltage Generation Load
Fm\m‘;s (PQ+EV) MW MVar MW MVar
1 1.06+4j0.0 0 0 0 0
2 1.04j0.0 40 30 20 10
3 1.040.0 0 1] 45 15
4 l.ﬂ:-_]E:D 0 o 40 5
5 10400 | D [ _ 60 i 10
Bus 3 (P Line Data for IEEE 5-Bus System
M\Bm 2 (PV) Line Line Impedance Line Charging
R per unit X per unit
1-2 0.02 0.06 0.0+0.03
13 0.08 0.24 0.04j0.025
&3 0.06 0.25 0.0+j0.02
2-4 0.06 0.18 0.0+j0.02
-5 0.04 0.12 0.0+j0.015
3-4 0.01 0.03 0.0+j0.01
Bus 1 (Slack) 45 0.08 0.24 0.0+{0.025

Build an IEEE-style 5-Bus Distribution Network (pandapower)




Classification Results

Predicted Output - SVM Predicted Output - KNN
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vm_ev  wvm_min wvm _max vm_mean line_loading max pct p_total_mw gq_total_mvar system pf  freg_hz df_hz thd_pct flicker_idx event duration_s label
0993962 0.991895 1.01 1.001171 62.085153  -0.987342 2839183 0328461 50006094 0006094 3725483 0.000000 0.237523 normal
0.992104 0.990650 1.01 1.000551 47437267 -0.731591 2902105  0.244442 50.018811 0.018311  4.761080 0.000000 0.134891 sag
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Classification Results

Predicted vs True Labels
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Results & Discussion

* Train/test split with labeled dataset
* Metrics: Accuracy (£3),

 Precision, Recall, F1-score

* Confusion matrix (7 classes)

* SVM outperforms k-NN consistently

* Higher accuracy & precision

* More balanced performance across classes

METRIC SVM KNN
Accuracy (£3) 0.94 0.88
F1 Score 0.54 0.46
Precision 0.71 0.49
Recall 0.59 0.53

[12, 0,0, 0,0: 0. 0l | [[2,9; 0, 0. 0,0, 0]

[0, 2, 0, 0,0, 0,01, |]O0,2,0,0, 0,0, 0],

10, 0,0, 0,02, 1}, |10 0. 2, 0, 1, 0,0l

Confusion Matrix | [0, 0, 0, 2, 0, 0, 0], [ [1, O, 1, O, O, 0, 0],

[10.0,.0,1.4,0,0L (][1,2, 1,00, 0,0].

0.0,0,0,2,0,01 ([1,0 1,0, 0, 0,0],

[0, 0, 0,0, 0,0, 1]] | [0, 0, O, O, O, 0, 1]]

The comparison of SVM and
KNN for power quality
classification. SVM delivers
consistently high accuracy
and balanced performance,
while KNN achieves
competitive results on
1mbalanced data. Overall,
SVM is more reliable, but
KNN offers adaptability
depending on task needs.



Key Insights, Practical Applications

Limitations & Future Work

* SVM handles nonlinear PQ data better
* Robust to noise & high-dimensional features
* k-NN limited by sensitivity to scaling
* Integrate into PQ monitoring systems
» Real-time classification at utility substations
* Triggers automated mitigation
(filters, DSM, protection settings)
* EV charging stresses PQ — urgent need for ML tools
 SVM =reliable, accurate classifier for PQ events
* k-NN = simple but less robust

* Simulation-driven ML offers scalable path to grid resilience

https://github.com/Nick-Panaya/PQSynergy.git

* Small-scale test system (IEEE 5-Bus)
» Limited detail on feature extraction &
sampling

* Future: real-world datasets, hybrid
models, _
online learning




