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Background & Expected Results

• Rise of EV adoption → higher stress on distribution grids

• EV charging = nonlinear, fluctuating loads

• Direct impact on Power Quality (PQ)

The growing integration of EV loads into distribution networks 

has introduced a range of power quality disturbances, including 

voltage sags, swells, harmonics, and flicker. These disruptions 

pose significant risks to grid stability and operational efficiency. 

This study investigates the application ML techniques for 

classifying PQ disturbances. Two algorithms, SVM and k-NN are 

evaluated for their accuracy, robustness, and reliability. Results 

demonstrate that while both models are effective in detecting PQ 

anomalies, SVM consistently delivers superior performance in 

terms of precision and stability, making it the more suitable 

choice for addressing PQ challenges in the IEEE 5-Bus system.
Representation of the experimental setup with measurement points.

Credit: Interaction among Multiple Electric Vehicle Chargers: Measurements on Harmonics and Power Quality Issues



Power Quality Challenges

• Voltage sag & swell

• Harmonics

• Flicker

• Transients

• Short-circuits &

switching events

Beyond academic exploration, this research forms part of a 
SaaS framework designed to enhance smart grid resilience. The 
proposed system leverages AI models built on ML algorithms 
to automatically detect and issue real-time alerts when PQ 
disturbances arise from EV loads. This approach supports 
proactive grid management, enabling utilities and stakeholders 
to mitigate risks, maintain service quality, and improve the 
overall reliability of future EV-integrated power systems.



Why Machine Learning?

• Hardware-based fixes = reactive

• ML allows proactive PQ event detection

• Enables real-time classification and early mitigation.

With the rising penetration of EVs, electrical distribution systems are becoming increasingly complex, rendering 
traditional PQ management methods inadequate. Conventional approaches, such as passive filters or voltage regulators, 
are largely reactive in nature and lack the flexibility to cope with rapidly changing load dynamics. This has created a 
demand for intelligent, real-time solutions capable of monitoring, detecting, and mitigating PQ disturbances more 
effectively. ML offers a promising pathway, as its algorithms can process large volumes of data, identify patterns within 
intricate electrical signals, and accurately classify PQ disturbances according to their type and severity.



Research Objectives

• Simulate PQ disturbances in EV-integrated networks

• Build labeled dataset of PQ events

• Compare ML models: SVM vs k-NN

• Evaluate performance across metrics

SVM k-NN



Simulation Environment

• Program Language: Python
• Injected dynamic EV load profiles

• Captured PQ under 

   normal, 

transient, 

distorted states



Problems formulations: Data Preparation

• Features: Voltage, Current, PF, Frequency, THD, Event Duration

• Samples: ~5,000 instances. Labeled by PQ event type (sag, swell, harmonics, etc.)



Machine Learning Algorithms

Types of machine learning
1. Supervised learning: Learn a model F from pairs of (x,y)
2. Unsupervised learning: Discover the hidden structure in unlabeled data x (no y)
3. Reinforcement learning: Train an agent to take appropriate actions in an environment by maximizing rewards.

SVM: RBF kernel, tuned C & γ
k-NN: Euclidean distance, parameter k chosen experimentally



Machine Learning Algorithms

Nearest Neighbour classification
Find the closest training data, assign the same label as the training data

Given query data. For every point in the training data
Compute the distance with the query. Assign label of the smallest distance

Nearest Neighbour is susceptible to noise in the training data
Use a voting scheme instead

For every point in the training data. Compute 
the distance with the query. Find the K closest 
data points. Assign label by voting.

The votes can be weighted by the 
inverse distance (weighted k-NN).

Distance (Similarity) Measure



SVM Model Workflow

Common question: how do we ensure an ‘optimal’ hyperplane? 

SVM are supervised machine learning algorithms widely applied in classification problems, particularly 
effective in cases, where data exhibit nonlinear separability. The core principle of SVM is to identify an 
optimal hyperplane that maximizes the margin between distinct classes within a feature space. By utilizing 
kernel functions—such as linear, polynomial, or radial basis function (RBF)—SVM can transform input 
data into higher-dimensional spaces, enabling the separation of complex, nonlinearly distributed patterns.



SVM in PQ

• Margin maximization principle

• Effective in nonlinear classification

• RBF kernel maps data into higher dimensions
Common question: how do we ensure an ‘optimal’ hyperplane? 



IEEE 5-Bus Test System

• 5-bus standard distribution model

• 1 slack bus, 2 PV buses, 2 PQ buses

• 100 MVA base system

• Widely used for stability & PQ studies

Build an IEEE-style 5-Bus Distribution Network (pandapower)



Classification Results



Classification Results



Results & Discussion

• Train/test split with labeled dataset

• Metrics: Accuracy (±3), 

• Precision, Recall, F1-score

• Confusion matrix (7 classes)

The comparison of SVM and 
KNN for power quality 
classification. SVM delivers 
consistently high accuracy 
and balanced performance, 
while KNN achieves 
competitive results on 
imbalanced data. Overall, 
SVM is more reliable, but 
KNN offers adaptability 
depending on task needs.

• SVM outperforms k-NN consistently

• Higher accuracy & precision

• More balanced performance across classes



Key Insights, Practical Applications

• SVM handles nonlinear PQ data better
• Robust to noise & high-dimensional features
• k-NN limited by sensitivity to scaling
• Integrate into PQ monitoring systems
• Real-time classification at utility substations
• Triggers automated mitigation 

(filters, DSM, protection settings)
• EV charging stresses PQ → urgent need for ML tools
• SVM = reliable, accurate classifier for PQ events
• k-NN = simple but less robust
• Simulation-driven ML offers scalable path to grid resilience

Limitations & Future Work

• Small-scale test system (IEEE 5-Bus)
• Limited detail on feature extraction & 

sampling
• Future: real-world datasets, hybrid 

models, 
online learning

https://github.com/Nick-Panaya/PQSynergy.git


