PQ SYNERGY 2017

Thermal Modeling of Oil Immersed ransformer Using Temperature Rise Data

• •

PEA.

5 🗀 4

NAT SONGKRAM POWER QUALITY ENGINEER

INTRODUCTION OBJECTIVE SCOPE OF WORK THEORY EXPERIMENTAL WORK RESULT & CONCLUSION

INTRODUCTION

IMPORTANT PART in distribution system

IMPORTANT PARAMETER is Hot Spot Temperature

For steady state

Hot Spot Temperature = function (Top Oil Temperature Rise)

Top Oil Temperature Max. Top Oil Temperature

ALARM 80-90 C

TRIP 90-100 C

Top Oil Temperature Indicator

Ambient Temperature is not recorded.

For light load condition, Hot Spot can not be detected.

IRANSFORMER CONDITION BASED MAINTENANCE ASSET MANAGEMENT

LOW COST

OMMO

=

SMART DEVICE

ONLINE CONDITION MONITORING

STEM

EASY COMMUNICATION

INTELLIGENT TRANSFORMER INTELLIGENT BRAIN

We need to know the relationship between oad and temperature rise

OBJECTIVE

To Study Thermal Modeling of Oil Immersed Transformer in PEA. Distribution System

TRANSIENT PROCESS

1

$$Q = C_{th} \frac{d\theta_{top\,oil}}{dt} + \frac{1}{R_{th}} \left(\theta_{top\,oil} - \theta_{amb}\right)$$

.

ne

$$\theta_{top \ oil} = (\theta_u - \theta_i) \left(1 - e^{-\frac{t}{\tau}} \right) + \theta_i$$

 $\tau = R_{th}C_{th}$

Sample	unit	А	В	С	D	E	F
Capacity	kVA	50	50	100	100	160	160
Voltage		22kV / 400V					

CONSIDER 3 SIZES OF TRANSFORMER ... 50 100 160 kVA

2 MANUFACTURER FOR EACH SIZE

ASDEGHUKLIGH

1.SET SHORT CIRCUIT TEST 2.VARY SUPPLY TO RATED TRANSFORMER LOSS 3.RECORD OIL AND AMBIENT TEMPERATURE

IME CONSTAN 65.00 60.00 55.00 top oil temperature (50.00 time constant=1.5 hr 45.00 time constant=2.6 hr 40.00 time constant=4 hr 35.00 recorded data 30.00 9 10 11 12 13 14 15 0 8 time (hour) **1.VARY TIME CONSTANCE FROM 1.5 TO 4 HRS.** 2.TIME CONSTANCE=2.6HRS.

3.BEST FIT , AVERAGE PERCENTAGE DEVIATION = 1.836%

1.CONSIDER STEADY STATE, Rth = 0.0305 K/W 2.TIME CONSTANCE=2.6HRS. 3. Cth = 306.67 kJ/K

Sample	unit	А	В	С	D	E	F
Capacity	kVA	50	50	100	100	160	160
Voltage		22kV / 400V					
temperature rise	к	35.40	35.70	43.10	41.20	42.40	38.10
Loss during test	w	1,014.70	1,069.00	1,767.00	1,687.00	2,439.00	2,368.00
Time constance	hrs	2.10	2.60	2.80	2.50	2.00	2.00
Thermal C	kJ/K	216.70	280.28	413.26	368.52	414.17	447.50
Thermal R	K/kW	34.89	33.40	24.39	24.42	17.38	16.09
APD.	%	2.13	0.84	1.15	0.56	0.39	0.78

1.TEMPERATURE RISE = 35-45 K 2.TIME CONSTANCE = 2.0 - 2.8 HRS.

Sample	unit	А	В	С	D	E	F
Capacity	kVA	50	50	100	100	160	160
Voltage		22kV / 400V					
temperature rise	к	35.40	35.70	43.10	41.20	42.40	38.10
Loss during test	w	1,014.70	1,069.00	1,767.00	1,687.00	2,439.00	2,368.00
Time constance	hrs	2.10	2.60	2.80	2.50	2.00	2.00
Thermal C	kJ/K	216.70	280.28	413.26	368.52	414.17	447.50
Thermal R	K/kW	34.89	33.40	24.39	24.42	17.38	16.09
APD.	%	2.13	0.84	1.15	0.56	0.39	0.78

3.THERMAL CAPACITANCE = 200-450 KJ/K 4.THERMAL RESISTANCE= 15-35 K/KW

$$$$

RECHECK THERMAL MODEL

$$Q = C_{th} \frac{\Delta \theta_{top \, oil}}{\Delta t} + \frac{1}{R_{th}} \left(\theta_{top \, oil} - \theta_{amb} \right)$$

%LOAD RANGE 60-100 %

SIMULATION RECALCULATE EVERY 60 MIN

USING DISCRETIZED EQUATION FOR MICROCONTROLLER

CONCLUSION

1. Thermal model of oil immersed distribution transformer was derived using raw data from transformer **temperature rise test**.

2. Dynamic and Discretized Thermal model that

is in simple form. It is good for micro controller.

Credits

Special thanks to all the people who made and released these awesome resources

CUSTOMER DIVISION PEA.N1 TRANSFORMER DIVISION PEA.HEAD OFFICE

Thanks! Any questions?

PQ SYNERGY 2017

Thermal Modeling of Oil Immersed ransformer Using Temperature Rise Data

• •

PEA.

5 🗀 4

NAT SONGKRAM POWER QUALITY ENGINEER

