# Safety Issues Caused by High Earth Resistance and Identifying Them Using Instruments

Thomas Szollossy
Senior Technical Support Engineer
Power Quality Thailand





**PQSynergy 2017, Chiang Mai, Thailand** 

#### Introduction

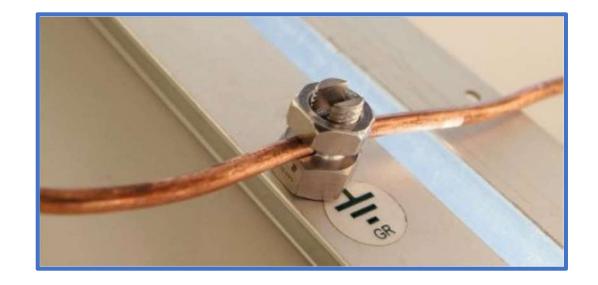
- High Earth Resistance results in inadequate grounding
- A good ground protects against dangerous voltages
  - Safety for humans
  - Protection of equipment
- Inadequate grounding can cause a fire hazard
  - Faults not cleared resulting in high currents
- Inadequate grounding effects Power Quality
  - Noise on protective earth

#### Introduction

• An Earth Resistance meter is used to measure the quality of grounding

Earth resistance meters are available from most Power Quality

Instrument manufacturers

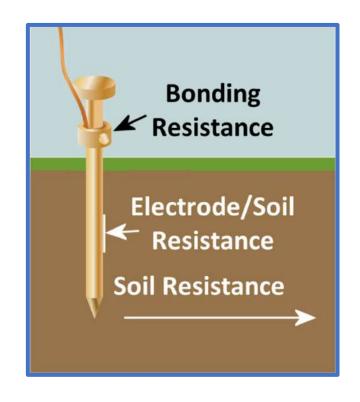

Various sizes, features, and prices





### **Purpose of Grounding**

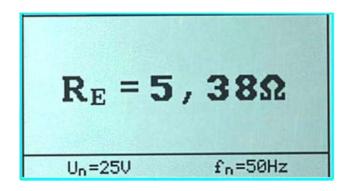
- The purpose of grounding is to provide safety for people and to protect electronic and electrical equipment
- Grounding provides a safe low impedance path for fault currents, lightning strikes, static discharges, EMI and RFI signals to be dissipated into the earth.




### **Grounding and Power Quality**

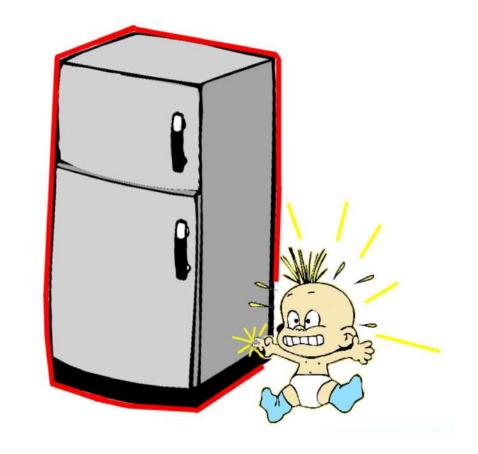
- Nearly 80% of reported Power Quality Problems are due to deficiencies in the wiring and more specifically in grounding (earthing)
- Power Quality Problem is defined as power supply causing equipment to not operate as intended

#### What is Earth Resistance?

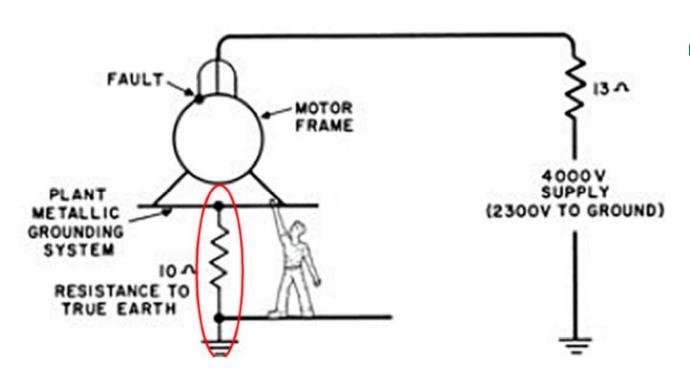

- It is the resistance to the passage of current from the equipment ground connection to the soil outside
- It is the sum of the following resistances:
  - Grounding system of the building
  - Bonding resistance of wire to ground electrodes
  - Resistance between electrode and soil
  - Soil Resistance



#### **Earth Resistance Measurement**



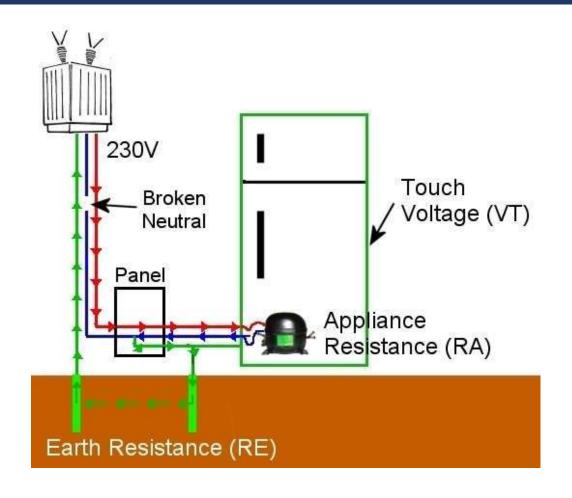

Earth Resistance Measurement is a direct measurement of the ability of the grounding system to dissipate current into the soil




#### Low Earth Resistance: Prevent Electric Shock

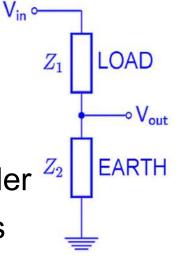
Low earth resistance prevents electric shock by keeping the voltage of grounded objects near the earth potential in the event of a fault




#### Low Earth Resistance: Prevent Electric Shock



- Example 1: Fault causes voltage on motor frame
  - Voltage on motor frame transferred to plant's grounding system.
  - Low earth resistance keeps voltage at safe level


Slide 9

#### Low Earth Resistance: Prevent Electric Shock

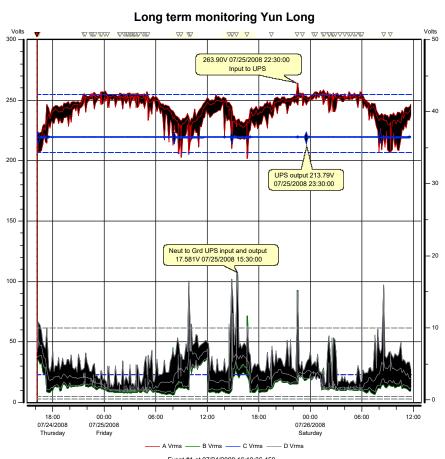


Example 2: Broken neutral in TN-C and TN-S grounding systems

- Return path to transformer through ground
- Earth resistance in series with load resistance → voltage divider
- Current through load generates voltage across Z<sub>2</sub>



#### Low Earth Resistance: Over-Voltage Protection


- Low earth resistance required for:
  - Lightning protection systems to work properly
  - Protection devices to channel power surges to ground
  - Keeping neutral voltage from rising in event of fault







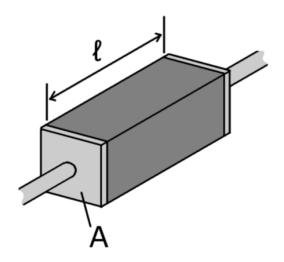
# Low Earth Resistance: Voltage Stabilization



← Neutral to Ground not stabilized by UPS!!!



### Low Earth Resistance: Voltage Stabilization


- Grounding system provides a common reference potential for power supply system, building structure, plant steelwork, electrical conduits, cable ladders & trays, and the instrumentation system
- Provides a common voltage reference for independent systems, such as electrical service, phone network, cable TV, etc.
- Minimizes electrical noise by conducting it to ground

#### Soil Resistivity: Largest Effect on Earth Resistance

- Soil Resistivity is the resistance of soil to passage of current through it
- It refers only to the resistivity of the soil. Ground spikes, wires, bonding are not included
- Use to decide the type of ground electrodes to install for the soil condition
- In a properly functioning grounding system, the soil contributes the most to total earth resistance

# What is "Resistivity"?

- Measured in ohm-meters [Ω·m]
- It is the resistance of a material taking its volume into consideration
- Also takes into consideration that material is not uniform material
- This is why Resistivity is used to measure the he soil's opposition to current flow



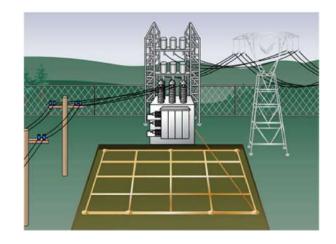
$$\rho = R \frac{A}{I}$$

P is the resistivityR is the resistanceA is cross section areaI is length

# Causes of High Soil Resistivity

- Soil dry
- Soil that contains a lot of sand and rocks
- Low mineral content of soil

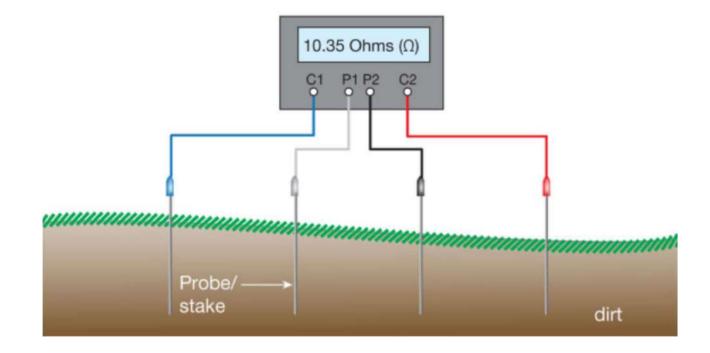




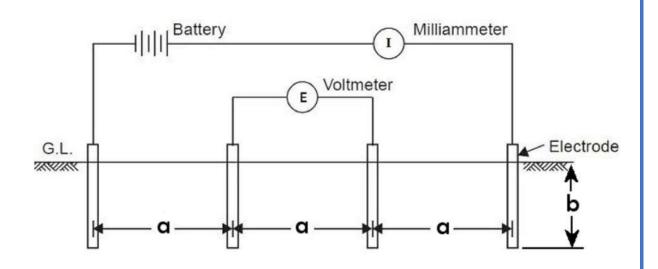



# Measuring Soil Resistivity to Decide What Kind of Ground Electrodes to Install

#### Especially important for:


- New building construction
- Electric utility & distribution stations
- Grounding of communications towers






#### Measuring Soil Resistivity Using Wenner Method

- 4 stakes, equally spaced, in a straight line
- Distance between them large compared to depth



#### Measuring Soil Resistivity Using Wenner Method



Stakes equal distance apart (a) and depth (b)

- Kelvin connection to soil
- If (a) much larger than (b), then Soil Resistivity ( $\rho_E$ ) is given by:

$$ho_E = 2\pi a \cdot \frac{E}{I}$$

• Meter calculates  $\rho_E$  internally and displays result

#### Effect of Soil Resistivity on Earth Resistance

- Table shows that soil resistivity has a very big effect on earth resistance
- For high resistivity soils, electrodes must be put deeper, and more than one electrode should be used

|                                      | Soil<br>resistivity<br>R <sub>E</sub> | Earthing resistance                |     |     |                            |     |     |
|--------------------------------------|---------------------------------------|------------------------------------|-----|-----|----------------------------|-----|-----|
| Type<br>of soil                      |                                       | Ground electrode depth<br>(meters) |     |     | Earthing strip<br>(meters) |     |     |
|                                      | ΩΜ                                    | 3                                  | 6   | 10  | 5                          | 10  | 20  |
| Very moist soil,<br>swamplike        | 30                                    | 10                                 | 5   | 3   | 12                         | 6   | 3   |
| Farming soil loamy<br>and clay soils | 100                                   | 33                                 | 17  | 10  | 40                         | 20  | 10  |
| Sandy clay soil                      | 150                                   | 50                                 | 25  | 15  | 60                         | 30  | 15  |
| Moist sandy soil                     | 300                                   | 66                                 | 33  | 20  | 80                         | 40  | 20  |
| Concrete 1:5                         | 400                                   | -                                  | -   | -   | 160                        | 80  | 40  |
| Moist gravel                         | 500                                   | 160                                | 80  | 48  | 200                        | 100 | 50  |
| Dry sandy soil                       | 1000                                  | 330                                | 165 | 100 | 400                        | 200 | 100 |
| Dry gravel                           | 1000                                  | 330                                | 165 | 100 | 400                        | 200 | 100 |
| Stoney soil                          | 30,000                                | 1000                               | 500 | 300 | 1200                       | 600 | 300 |
| Rock                                 | 107                                   | -                                  | -   | -   | -                          | -   | -   |

#### **Back to Topic of Earth Resistance**

- Just finished discussing <u>Soil Resistivity</u>, which is the largest contributor to high Earth Resistance
- Looked at Wenner method to measure Soil Resistivity
- Next, we will talk about other contributors to high Earth Resistance

# **Connections to Soil are Very Important!**





Choose the correct method to connect into the soil, based on measured resistivity of the soil

#### Most common connection to soil problems

- Ground rods not deep enough (40% decrease in resistance if length doubled)
- Not enough grounding rods for soil conditions (ground rods in parallel)
- Not using proper grounding electrodes for high-resistivity soil:
  - Ground mesh
  - Ground plate
  - Radial conductors



#### High Earth Resistance: Connections Within System







Every bad connection in the grounding system adds to earth resistance

#### High Earth Resistance: Connections Within System

- Loose, corroded, or improper connections to the grounding system in the soil
- Ground rods located outside
  - Weather causes corrosion
  - Damage caused by vehicles/people/etc.
- Connections at junction boxes, wall receptacles, bus bars, and bonding connections together increase total ground resistance



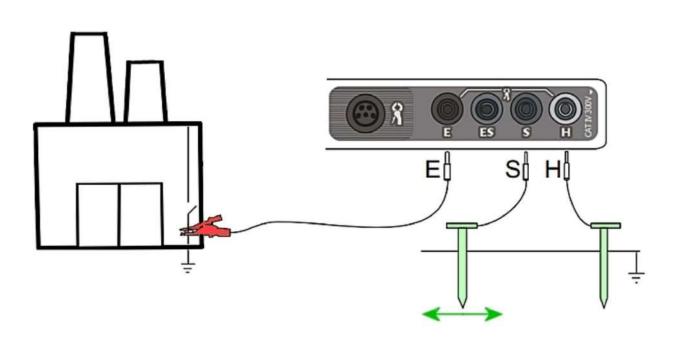
Ground wire cut at Hospital in China

# High Earth Resistance: Damaged Conductors



Wire damaged by drilling




Wire damaged during construction/maintenance

# Measuring Earth Resistance: Fall of Potential Method (3-pole) Description

- Also known as 62% Method
- Measurement of the entire grounding system including rod, bonding, and soil
- Referenced in all the electrical installation testing standards and measures the earth resistance both accurately and safely.
- This is the earth resistance measurement of reference



# Measuring Earth Resistance: Fall of Potential Method (3-pole) Process



- Cut power and disconnect system at earth electrode
- Current travels form red clip to last stake
- Meter measures voltage at middle stake
- Make several measurements with middle stake different locations
- If big difference, then move "H" electrode farther away and repeat

#### Measuring Earth Resistance of Transmission Towers

- Very important to have good grounding of metal towers due to extreme high voltages
- High Earth Resistance will result in deadly voltages on the tower and the soil nearby if live wire touches tower





#### Other Earth Resistance Measurements

| MEASUREMENT                            | APPLICATION                  |  |  |
|----------------------------------------|------------------------------|--|--|
| 2-Pole (Earth & Equipotential Bonding) | Internal grounding system    |  |  |
| 4-Pole Method                          | High accuracy                |  |  |
| 3-Pole + Clamp                         | No need to disconnect ground |  |  |
| 2-Clamp                                | No need for stakes in ground |  |  |
| Impulse Method                         | For lighting safety systems  |  |  |
| Current                                | Earth leakage current        |  |  |

### Acceptable Earth Resistances

| Factory              | 5 Ω     |
|----------------------|---------|
| Mobile Phone Tower   | . 5 Ω   |
| Major power station  | . 0.5 Ω |
| Major Sub-station    | .1.0 Ω  |
| Minor Sub-station    | . 2 Ω   |
| Service connection   | .4 Ω    |
| Med. Voltage Network | 2 Ω     |
| Lightening Arrestor  | . 4 Ω   |
| Low Tension Pole     | . 5 Ω   |
| High Tension Pole    | 10 Ω    |
| Transmission Tower   | 20-30 Ω |



#### Conclusion

- Earth resistance is very important to safety of people and equipment
- It is tempting to check the ground connections in the building, but not think to check the actual connection into the earth
- Also not think to check soil resistivity
- Entire grounding system health can be checked quickly and easily using the correct tools
- Earth resistance check should be part of the regular electrical system testing and maintenance plan

# The End







