

Proactive Use of PQ Data

Beyond Post-mortem Analysis

Bill Howe, PE Program Manager, Power Quality

17th Annual PQSynergyTM International Conference and Exhibition

> Chiang Rai, Thailand 24 – 26 April 2017

Approaches for PQ Data

Step 1: Identification of Goals for PQ Monitoring

(CIGRE C4.112 Guidelines for PQ Monitoring)

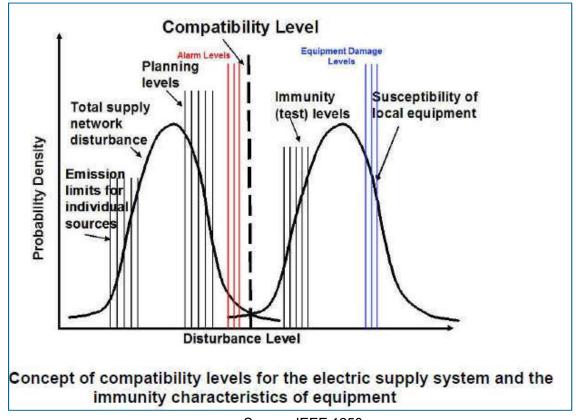
Compliance Verification

- Regulatory requirements
- Conformance to standards (e.g.: IEC 61000-3-6, 7, and 13)
- Performance analysis / benchmarking
 - Strategic planning and asset management (IEC 61000-4-30)
 - Average PQ and overall trends

Site Characterization

- Usually customer specific, either for service quality or compliance
- Often done with temporary monitoring
- Troubleshooting
 - Investigation of specific customer or grid PQ issues
 - Often conducted with temporary monitoring
- Advanced Applications
 - Aggressive use of PQ data in near- or real-time
 - Enabling outcomes beyond mere measurement and investigation
 - Active PQ management

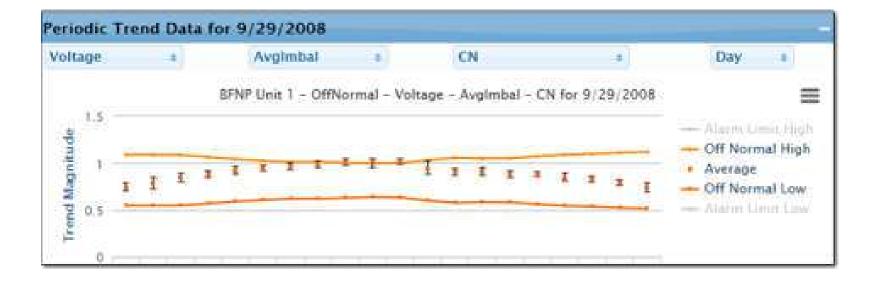
Approaches for PQ Data Step 2: Implementation of monitoring


PQ Monitoring Type

- Portable
 - Characterization
 - Troubleshooting
- Fixed, but transitory
 - Compliance and verification
 - Benchmarking
- Permanent
 - Advanced applications plus other outcomes
- PQ Monitoring Locations
 - Customer PCC
 - Substations
 - Subset / Sample
 - All buses
 - Proximity to important grid assets

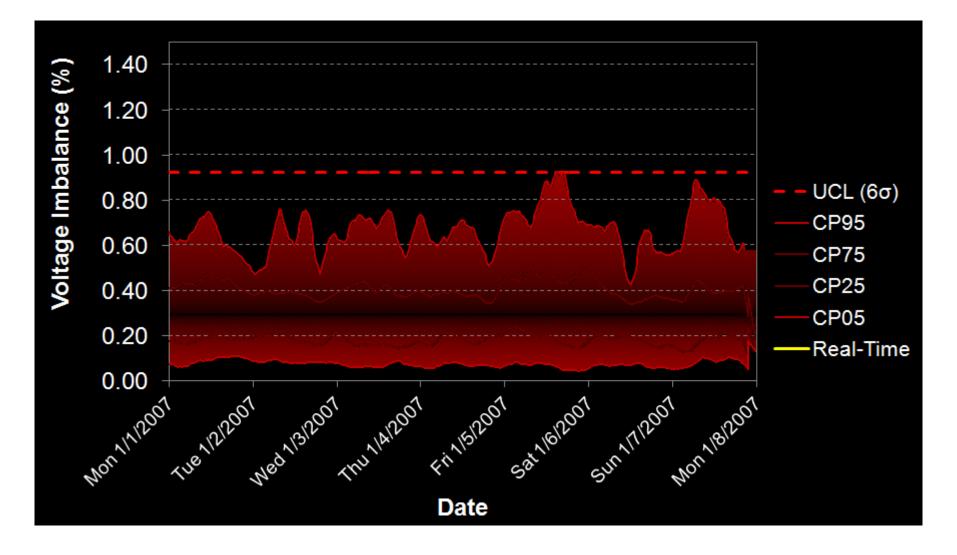
Classic approaches using PQ data

- Post-mortem analysis of grid events
- Threshold-based alarming when limits are exceeded
- Benchmarking based on past performance
- Investigating customer complaints
- We can -- and must -- do better!

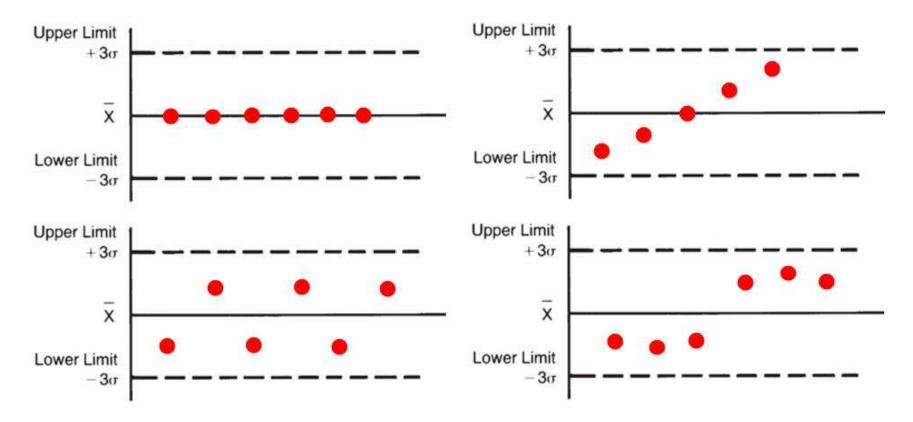


Source: IEEE 1250

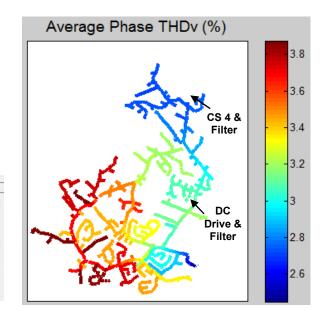
RESEARCH INSTITUTE

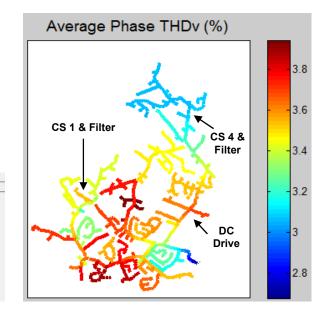

Proactive Use of PQ Data Continuous tracking of PQ Performance

- Monitoring of PQ parameters on a continuous basis rather than only after-the-fact
- Statistical Process Control (SPC) techniques can be adapted from other industries


Statistical Process Control for PQ Example

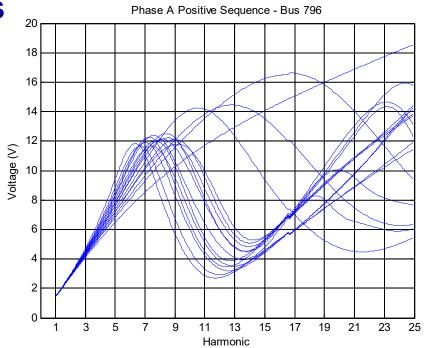
Statistical Process Control for PQ Detecting problems/issues before they become problems


- In addition to continuous tracking of PQ, SPC techniques allow detection of a very wide range of issues
- Other benefits include data validation



Proactive Use of PQ Data Scenario Analysis of PQ *future* impact of grid configurations and loads

	Capacitor Name	Bus	Status	Kvar	Filter	Tuning	Connect	ion
1	Capacitor.mdv201_hn_2_116_ab	28285		600	10	0	wye	
2	Capacitor.mdv201_hn_2_818_ab	63707	V	300	1	0	wye	
3	Capacitor.mdv201_hn_2_345_ab	8081		450		0	wye	
4	Capacitor.mdv201_da_8_153_ab	74433	V	600		4.7000	wye	
5	Capacitor.63711	63711		600		4.7000	wye	



3) Edit Capacitor Bank Attributes

	Capacitor Name	Bus	Status	Kvar	Filter	Tuning	Connectio	on
1	Capacitor.mdv201_hn_2_116_ab	28285		600	J	4.7000	wye	¥
2	Capacitor.mdv201_hn_2_818_ab	63707	V	300		0	wye	+
3	Capacitor.mdv201_hn_2_345_ab	8081	V	450	1000	0	wye	•
4	Capacitor.mdv201_da_8_153_ab	74433	V	600	1	4.7000	wye	+
5	Capacitor.63711	63711		600	1	4.7000	wye	-

Scenario Analysis of PQ *future* impact of grid configurations and loads Comparing configurations

- Type (positive/Zero)
- Cap configuration
 - ✓ User selected
 - ✓ All possible combinations
- Screening capability to identify potential problem configurations

ile Edit View Insert Tools Desktop Window	Help								
		НЗ	H5	H7	H9	H11	H13	H15	
Capacitor.mdv201_hn_2_116_abc28285-1		1	1	1	0	0	0	0	
Capacitor.mdv201_hn_2_818_abc63707-1		1	1	1	1	1	1	1	=
Capacitor.mdv201_hn_2_345_abc8081-1		1	1	1	1	1	0	0	-
Capacitor.mdv201_da_8_153_abc74433-1		1	1	0	0	0	0	0	-
				111					

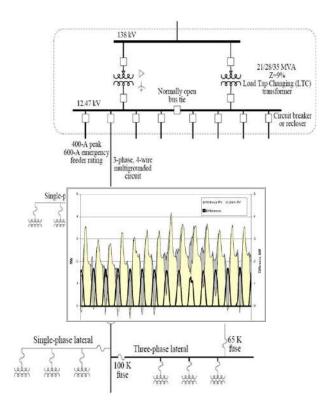
2030 Load Mix Harmonic Analysis

- Below is the estimate of proportion of loads belonging to category of non-linear loads based on EIA outlook
- Assumptions for the load mix

	Load category	2010	2030 Projection	2030 Projection
Non-linear Load Projections			Excluding electronic Lighting and Drives	Including electronic Lighting and Drives
	Commercial	40%	48%	60%
	Residential	44 %	50%	60%

Combined Impact of Various Harmonic Sources

 The combined impact is not linear as individual harmonics are added vectorally


Voltage Harmonics at Substation

Harmonic	Base Case	Added CFL Alone	Added PEV Alone	Added Entert. Load Alone	Added ECM HVAC Alone	Added All the Loads		
H3 (%)	1.9	2.2	1.8	2.1	2.3	2.8		
H5 (%)	2.7	2.2	2.4	2.8	2.0	2.0		
H7 (%)	2.1	4.9	1.9	2.7	3.2	4.5		
THD (%)	4.2	6.0	3.9	4.7	4.7	5.9		
	Predicted increase in THD: ~40%							

Proactive Use of PQ Data Incipient Failure Detection

- PQ Monitors are an important sensor
 - Strategically located
 - Higher resolution data
- PQ monitoring, however, is NOT just a sensor
 - A dedicated team committed to design, O&M, and application of the data
- Many grid-connected devices can be monitored using PQ data
 - Transformers
 - Capacitors
 - Load Tap Changers
 - Reclosers
 - Etc.

Incipient Failure Detection using PQ Data Capacitor Switch Assessment

CSA Extended Analytics Service for PQ Dashboard (Software)

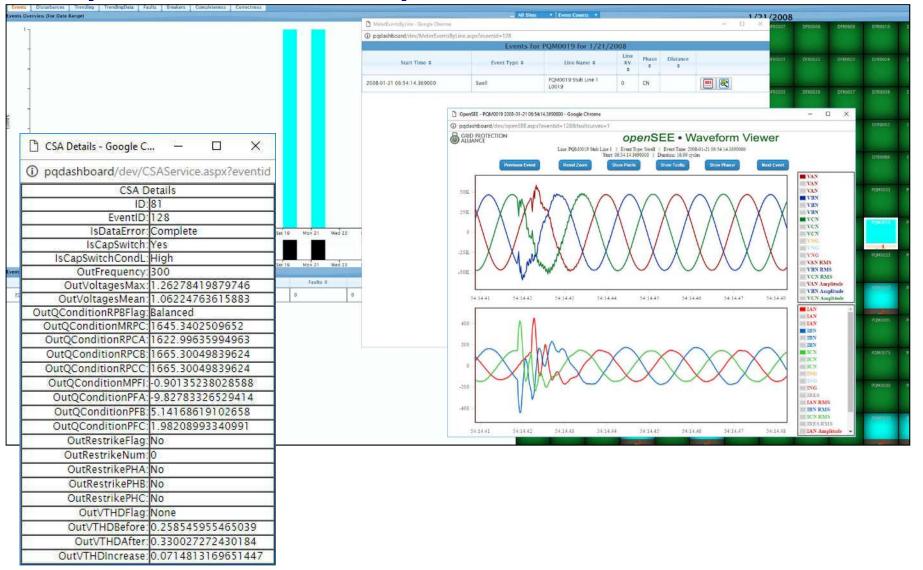
- Gap:

 Last years Capacitor Switching Assessment Module (CSA-DLL), does not have the appropriate interface for automated reporting through PQ Dashboard.

- Objective:

 Provide an automated reporting function through PQ Dashboard or other platform to report Capacitor Switching Assessment

- Description:


- 2015 delivered:
 - Implementation of Capacitor Switching Assessment Module (CSA-DLL), a Matlab Based DLL, Product ID: 3002005960
 - Open Source Extended Analytics Service Template (EAS-T), Product ID: 3002005961
- The EAS-T will be used to develop an EAS to run the CSA-DLL utilizing PQ data through OpenXDA for reporting through the PQ Dashboard

– Benefits & Value:

- Automatic process performs near real-time analysis in time to react to CSA condition instead of post event analysis.
- Currently being applied at TVA and other utilities

Capacitor Switching Assessment using PQ Data Sample CSA Event & Report

Together...Shaping the Future of Electricity

