

Power Market Transformation

and **Power Quality** impact

of Prosumer on Distribution

Smart Grid

Mr. Wanchalerm Patanacharoenwong

Engineer L.5 of Power Quality Analysis Section

Miss Panaya Sudta

Assistant Chief of Power Quality Analysis Section CUSTOMER SERVICE DIVISION PEA Area 3 (North) Loburi Province

Power Market Transformation and Power Quality impact of Prosumer on Distribution Smart Grid

Introduction to PEA Smart grid Roadmap
Transformation of Power Section
Third Party Access Framework (in case prosumer)
Challenge in Changing Distribution network
Reliability & Power Quality Challenge

PEA Smart grid Roadmap

Smart Energy	 Electricity networks in 4 cities automated system. Unmanned substation Microgrids Energy Storage / Solar Rooftop Network supports of DG The integration of Enterprise System Mobile Workforce in 4 cities 	 Optimal Asset management Complete of MWM Completion of unmanned substation Expand fully automated network covering major cities across the country The penetration of renewable energy sources and energy storage in communities 	 Automated electricity networks nationwide/self-healing features enabled Smart community network integrated with a large renewable energy resources Perfect cyber security system The balanced and forecast system production corresponds to energy utilization Virtual power plants created
Smart Life	 Advanced Metering Infrastructure (AMI) in 26 municipalities of PEA service area Demand response management 	 AMI development completion Energy management completion in all large/medium cities The system provides power usage information via the internet Domestic consumers can produce their own electricity; surpluses can be sold to utility Home/building energy management automation reduces electricity bills 	 Power consumers can buy or sell electricity in real time Users can choose to buy electricity from different supplies Optimal Energy management
Smart Community	Public charging station	 The extensive use of electric transportation The penetration of intelligent public street and community lighting in communities Bundled services with other utilities (common billing etc.) 	 Intelligent electric vehicle charging to reduce peak demand Two ways power supply of electric vehicles (vehicle to grid –V2G)

Structure of Power Market in Thailand

Disintegration of the vertically integrated structure of electric power companies

THE ELECTRICITY MARKET

Source: The Structure of electricity market by Mikael Amelin

KTH Royal Institute of Technology in Stockholm

SMART ENERGY FOR BETTER LIFE AND SUSTAINABILITY

SMART ENERGY FOR BETTER LIFE AND SUSTAINABILITY

Problems formulations for prosumer management

Analyst and cluster the load pattern

Details of SPP and VSPP COD in PEAN3

← 14/03/2559

บริษัท เค.จี. เอนเนอร์จี

เบอร์โทรศัพท์ 081-8036600, 02-9514455,02-9515535

เลขที่สัญญา PV-PEA-N3-533/2558

กำลังผลิตดิดตั้งจริง (kW) 10

สถานที่ติดตั้งแผง 10 หมู่ที่ 3 ต่าบลวังขอนขว้าง อำเภอโคกสำโรง จังหวัดลพบุรี

พิกัด 15.027495 , 100.686533

เลขทีหนังสือใบยกเว้นฯ 5505.3/1013

สถานะดำเนินการ COD แล้ว

พื้นที่ กฟฟ. กฟอ.โคกสำโรง

PEA No หม้อแปลง 52-920619

ขนาดหม้อแปลง (kVA) 100

หมายเหตุ ★

The impact evaluation of SPP & VSPP

MW IMP MW EXP MVAR IMP MVAR EXP

Power Quality Problem: Harmonic

Harmonic is a signal whose frequency is a multiple of the frequency of a reference signal Harmonics are due to periodic distortion of the voltage or current waveform The distortion comes from nonlinear devices, principally loads Harmonic Sources

Harmonic component

Ferromagnetic devices-

Transformers, motors Arcing devices-

Arcing devices-

arc furnaces, fluorescent lighting

Power converters: Prosumer Devices Fundamental component

Distorted waveform

Decomposition into Harmonic Components – Fourier series

$$\mathbf{v}(t) = \mathbf{V}_{dc} + \sum_{h=1}^{\infty} \sqrt{2} \mathbf{V}_{h} \sin(h\omega_{0}t + \theta_{h})$$

$$\mathbf{i}(t) = \mathbf{I}_{dc} + \sum_{h=1}^{\infty} \sqrt{2} \mathbf{V}_{h} \sin(h\omega_{0}t + \delta_{h})$$

Harmonic Sources – 6-pulse rectifier e.g. Variable Speed Drives or Medium Frequency Furnaces

h=harmonic; p=pulse number; m= 1,2,3 ,... ; f_N = system frequency ;

* for smoothed d.c. only

 ϕ = phase displacement between current and voltage; α = converters firing angle

Harmonic Sources – 12-pulse rectifier e.g. Variable Speed Drives or Medium Frequency Furnaces

h=harmonic; p=pulse number; m= 1,2,3 ,... ; f_N= system frequency; * for smoothed d.c. only

Undesirable Effects of Harmonics in Power Systems

Undesirable Effects of Harmonics

- Overheating resulting in need of derating of the equipment.

- Potential for problems with excessive ground currents (stray voltages, telephone interference, relay mis-operation) on systems with single phase loads.

- Capacitors for power factor correction and cable systems aggravate the problem by causing resonances.

Are harmonic levels increasing?

Changing system characteristics More power factor correction More cable Changing load More harmonic generation Less damping Other characteristics

56.52'C

16.3'C

Parallel Resonance

IEEE Standard 519-1992- Current Distortion Limits Odd harmonics Distortion limits (%I,) for individual customers

Base voltage Limit (kV)	I _{SC} /I _L	h<11	11≤h<17	17≤h<23	23≤h<35	35≤ h
	<20	4.0	2.0	1.5	0.6	0.3
	20-50	7.0	3.5	2.5	1.0	0.5
0.12 - 69	50-100	10.0	4.5	4.0	1.5	0.7
	100-1000	12.0	5.5	5.0	2.0	1.0
	>1000	15.0	7.0	6.0	2.5	1.4
	<20	2.0	1.0	0.75	0.3	0.15
	20-50	3.5	1.75	1.25	0.5	0.25
69.001 – 161	50-100	5.0	2.25	2.0	0.75	0.35
	100-1000	6.0	2.75	2.5	1.0	0.5
	>1000	7.5	3.5	3.0	1.25	0.7
	<50	2.0	1.0	0.75	0.3	0.15
> 161	≥50	3.0	1.5	1.15	0.45	0.22

The limits applicable for normal conditions For shorter periods (e.g. startup) limits may be exceeded by 50%

Table	11-1-Voltage Distortion Limits	
		-

Bus Voltage at PCC	Individual Voltage Distortion (%)	Total Voltage Distortion THD (%)
69 kV and below	3.0	5.0
69.001 kV through 161 kV	1.5	2.5
161.001 kV and above	1.0	1.5

NOTE — High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will attenuate by the time it is tapped for a user.

Even harmonics are limited to 25% of the odd harmonic limits

The limits applicable for normal conditions

For shorter periods (e.g. startup) limits may be exceeded by 50%

Tables applicable for 6-pulse convertors

For higher pulse number (q), limits may be increased by a factor of sqrt(q/6) provided non-characteristic harmonics are less than 25% of the specified limit.

Current Distortion Limits at point of common coupling

PRC-PQG-01/1998: PEA's Regulation on the Power Network System Interconnection code B.E.2559(2016) Current Distortion Limits at point of common coupling

Base voltage limit	MVAsc**		Current Distortion Limits (A rms)																
PCC Voltage (kV)	Base	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0.400	10	48	34	22	56	11	40	9	8	7	19	6	16	5	5	5	6	4	6
11 and 12	100	13	8	6	10	4	8	3	3	3	7	2	6	2	2	2	2	1	1
22, 24 and 33	500	11	7	5	9	4	6	3	2	2	6	2	5	2	1	1	2	1	1
69	500	8.5	6	4.3	7.3	3.3	4.9	2.3	1.6	1.6	4.9	1.6	4.3	1.6	1	1	1.6	1	1
115 and above	1,000	5	4	3	4	2	3	1	1	1	3	1	3	1	1	1	1	1	1

 $MVA_{SC1} \neq MVA_{SC-BASE}$

 I_{h} = Harmonic Current (A) h order that is allowed to flow in the system when MVA_{sc} = MVA_{sc1} Where; I_{hp} = Harmonic Current (A) h order in table 1

 MVA_{sc1} = Minimum MVA_{sc} at PCC

 $MVA_{sc-Base} = Base MVA_{sc}$ for harmonic current from table 1

 $I_{h} = \frac{I_{hp} \times MVA_{SC1}}{MVA_{SC-BASE}}$

Timeplot

Compettitic Chart properties

Amos -	Channels	💷 V Interharm. Groups (200ms) 🔛 I Harmonics 🗵 I Harmonic Groups (200ms) 📃 I Interharm. 🕨	
	DENSO INCOMING22kV 05-10-65]		
1	Basic Metering Adv. Metering		
10.0 -	Demand	+ HC00 Current 200ms Spectra by Harmonic Group index	
	Adv. Energy	+ LHC01 Current 200ms Spectra by Harmonic Group index	I HALL I. HILL I
	Unbalance	+ 1HG02 Current 200ms Spectra by Harmonic Group index	l (Mills, N. I. 1931) I. A
76		+ LHG03 Current 200ms Spectra by Harmonic Group index	LI MANINA INA DA BANNA A. MILA I
	Distortion	+ IHG04 Current 200ms Spectra by Harmonic Group index	
	V Harmonics	+ LHG05 v2 v2 v2 v2 Current 200ms Spectra by Harmonic Group index	
	V Interharm, Groups (200ms)	+ IHG06 Current 200ms Spectra by Harmonic Group index	I AN ANY SUBJECTION OF A LONG AND A LONG ALL AND A LONG A
5.0 -	I Harmonics	+ 1HG07 VVV Current 200ms Spectra by Harmonic Group index	
	I Harmonic Groups (200ms)	+ IHG08 Current 200ms Spectra by Harmonic Group index	
	I Interharm. Groups (200ms)	+ IHG09 Current 200ms Spectra by Harmonic Group index	
	Adv. Unbalance	+ IHG10 Current 200ms Spectra by Harmonic Group index	- THERE IN THE OWNER WITH THE AVERAGE AND A SUBJECT OF
2.5	Math channels	+ IHG11 VVV Current 200ms Spectra by Harmonic Group index	
	Appearance Harmonics	+ IHG12 Current 200ms Spectra by Harmonic Group index	
		+ IHG13 VVV Current 200ms Spectra by Harmonic Group index	
0.0		+ IHG14 Current 200ms Spectra by Harmonic Group index	
┦╘╧╧╤╤		+ IHG15 Current 200ms Spectra by Harmonic Group index	
10/05/2022		+ IHG16 Current 200ms Spectra by Harmonic Group index	10/20/2022
A1 HG05 (m		+ IHG17 V V Current 200ms Spectra by Harmonic Group index	A I HG13 (max/avg) B I HG13 (max/avg) C I HG13 (max/avg)
—— AI HG17 (m		+ IHG18 Current 200ms Spectra by Harmonic Group index	
	< >	+ IHG19 VVV Current 200ms Spectra by Harmonic Group index V	
-	_		
		OK Cancel Help	
L		AI HG11 0.2177 3.660 0.8967 1.576 BI HG11 0.2986 4.169 0.9312 1.564 CI HG11 0.1957 4.237 1.034 1.748 AI HG13 0.11957 2.750 0.5233 1.182 BI HG13 0.1546 3.571 0.6131 1.617 CI HG13 0.1165 3.256 0.6053 1.479 AI HG17 0.06373 0.9965 0.2996 0.4638 BI HG17 0.07872 1.321 0.2873 0.4673 CI HG17 0.06452 0.9980 0.2647 0.4209 AI HG19 0.04638 0.8052 0.2284 0.3769	
		BI HG19 0.05853 0.9500 0.2707 0.4466 CI HG19 0.04734 0.9432 0.2711 0.4810	

-

 ∇

10/25/2022

Add Harmonic load

General Load - Grid\General	Load.ElmLod
Basic Data	General Advar
Load Flow	Input Mode
VDE/IEC Short-Circuit	Balanced/Unb
Complete Short-Circuit	Operating Po
ANSI Short-Circuit	Current
IEC 61363	Power Facto
DC Short-Circuit	Voltage
RMS-Simulation	Scaling Facto
EMT-Simulation	Adjusted
Harmonics/Power Quality	Phase 1
Optimal Power Flow	Current
State Estimation	Power Factor
Reliability	Dhave 2
Generation Adequacy	Current
Description	Power Factor
	TowerTactor
	Phase 3
	Current
	Power Factor

	Onden	Current (A)				%Fund		Fund (A)			
oad	Order	Α	В	С	Α	В	С	Α	В	С	
	3	15.98	1.328	14.04	7.080	0.674	6.975	225.7	197.1	201.3	
	5	27.63	22.73	33.52	12.242	11.532	16.652				
	7	18.85	15	21.37	8.352	7.610	10.616				
.ElmLod	9	0.981	1.096	1.315	0.435	0.556	0.653				
neral Advanced	11	2.14	4.129	3.382	0.948	2.095	1.680				
in a la l	13	3.234	1.854	2.777	1.433	0.941	1.380				
out Mode	17	1.82	2.571	2.688	0.806	1.304	1.335				
	19	1.261	0.6135	0.9028	0.559	0.311	0.448				
lanced/Unbalanced	Unbaland	ced	-								
Operating Point									000		
Current	0.2070568	kA		Harmonic Sou	rces - Equip	oment Type I	_ibrary∖Har	rmonic Sou	rces.TypHm	ccur *	
Power Factor	0.8382398	ind. 💌		Basic Data		Name H	lamonic So	urces			
Voltage	1.	p.u.		Description							
		-		Description		- Type of Ha	monic Sou	mes			

Scaling Factor	1.	
Adjusted by Loa	ad Scaling	Zone Scaling Factor:

Phase 1		
Current	0.2257	kA
Power Factor	0.893	ind. 💌
Phase 2		
Current	0.1971	kA
Power Factor	0.8391	ind. 💌

hase 3		
Current	0.2013	kA
ower Factor	0.7638001	ind. 💌

- C Balanced, Phase Correct
- Unbalanced, Phase Correct
- C IEC 61000

Harmonics:

	Harmonic Order	la_h/la_1 %	lb_h/lb_1 %	lc_h/lc_1 %
1	3.	7.08	0.674	6.975
2	5.	12.242	11.532	16.652
3	7.	8.352	7.61	10.616
4	9.	0.435	0.556	0.653
5	11.	0.948	2.095	1.68
6	13.	1.433	0.941	1.38
7	17.	0.806	1.304	1.335
► 8	19.	0.559	0.311	0.448
_				

Harmonic Case Study in Power Systems

Harmonic Load Flow Running

Frequency Response Characteristics

Devices for Controlling Harmonic Distortion

Chokes for ASD applications Zig-zag transformers Passive Filters Active filters

Shunt Passive Filter Configurations

Effect of Notch Filter on the Frequency Response Characteristics

Non linear load only Non linear load with Tune filter order 5

Non linear load with Tune filter order 5 and 7

Harmonic Case Study: Solve by Tune Filter

[:	Shunt/Filter - Grid\Shunt/Filt	Change Cap Bank to Tun	e Filter Order#11	Design Parameter (per Step) Rated Reactive Power, L-C 504.2103 kvar
External Grid	Basic Data	General Measurement Report Zero Sequence/Neutral Con	ductor	Degree 0.8333476 %
Psum=0.120 MW Osum=0.429 Myar	Load Flow VDE/IEC Short-Circuit Complete Short-Circuit	Name Shunt/Filter Terminal ✓ ➡ Grid\Customer400V\Cub_2 Zone ➡ Area ➡	Customer400V	Quality Factor (at fr)
PEA22kV	IEC 61363 DC Short-Circuit RMS-Simulation	Need Image: Constraint of the service System Type AC Image: Constraint of the service Nominal Voltage 0.4	3PH-'D'	$V_{c} = V_{s} = \frac{400}{1000} = 403.3 V$
1.00 0.0 0.4 1.00 0.0 0.0 0.0 0.0 0.0 0.0 0.	EMT-Simulation Harmonics/Power Quality Optimal Power Flow	Shunt Type R-L-C Input Mode Design Parameter		(1-%XL) (1-0.0083)
Customer400V	Reliability Generation Adequacy Description	Controller Max. No. of Steps 1 Act.No. of Step 1	Max. Rated Reactive Power 504.2103 kvar Actual Reactive Power 504.2103 kvar	80.00
Connect Lood		Design Parameter (per Step) Rated Reactive Power, L-C 504.2103 kvar	Layout Parameter (per Step) Capacitance 3315.784 uF	
Shunt/Filter Shunt/Filter Shunt/Filter Shunt/Filter Shunt/Filter		Quality Factor (at fr)	Inductance 0.0254648 mH	
n for Relevant Controllers			Unini Unini	
	1			0.00 3.00 5.00 7.00 9.00 11.0 13.0 17.0 19.0 [-] TR01_22/0.4kV: Phase Current A/LV-Side in A TR01_22/0.4kV: Phase Current B/LV-Side in A TR01_22/0.4kV: Phase Current C/LV-Side in A TR01_22/0.4kV: Phase Current N/LV-Side in A

Non linear load only

Non linear load with Tune filter order 5

Non linear load with Tune filter order 5 and 7

Harmonic Case Study: Solve by Detune Filter

Brightness for 🦾 🌈 Quality สว่ามทั่วทิศ สร้ามคุณภาพชีวิตทั่วไทย

-`_

-`•

-

Thank you for your attention

wanchalerm.pat@pea.co.th

panaya.sud@pea.co.th

Copyright © 2020 Provincial Electricity Authority

₫⁄