

Harmonic Compensation

for Power Quality Enhancement in Grid Integration of **Photovoltaic** using **Active Power Filter**

Miss Patchara Boonsopark

Deputy Manager Customer Service Division

Miss Panaya Sudta

Assistant Chief of Power Quality Analysis Section CUSTOMER SERVICE DIVISION PEA Area 3 (North) Loburi Province

AGENDA

Harmonic Compensation for Power Quality Enhancement in Grid Integration of Photovoltaic using Active Power Filter

Introduction

*****Active Power Filter (APF)

The theory of instantaneous reactive power (PQ)

The hysteresis approach to control APF

for reduction of harmonics

Result and discussion

PEA Smart grid Roadmap

Smart Energy	 Electricity networks in 4 cities automated system. Unmanned substation Microgrids Energy Storage / Solar Rooftop Network supports of DG The integration of Enterprise System Mobile Workforce in 4 cities 	 Optimal Asset management Complete of MWM Completion of unmanned substation Expand fully automated network covering major cities across the country The penetration of renewable energy sources and energy storage in communities 	 efficiency improvement Automated electricity networks nationwide/self-healing features enabled Smart community network integrated with a large renewable energy resources Perfect cyber security system The balanced and forecast system production corresponds to energy utilization Virtual power plants created
Smart Life	 Advanced Metering Infrastructure (AMI) in 26 municipalities of PEA service area Demand response management 	 AMI development completion Energy management completion in all large/medium cities The system provides power usage information via the internet Domestic consumers can produce their own electricity; surpluses can be sold to utility Home/building energy management automation reduces electricity bills 	 Power consumers can buy or sell electricity in real time Users can choose to buy electricity from different supplies Optimal Energy management
Smart Community	Public charging station	 The extensive use of electric transportation The penetration of intelligent public street and community lighting in communities Bundled services with other utilities (common billing etc.) 	 Intelligent electric vehicle charging to reduce peak demand Two ways power supply of electric vehicles (vehicle to grid –V2G)

Harmonic is a signal whose frequency is a multiple of the frequency of a reference signal Harmonics are due to periodic distortion of the voltage or current waveform The distortion comes from nonlinear devices, principally loads Harmonic Sources

Ferromagnetic devices-Transformers, motors Arcing devicesarc furnaces, fluorescent lighting Power converters

Distorted waveform

 \cap

Decomposition into Harmonic Components – Fourier series

$$\mathbf{v}(t) = \mathbf{V}_{dc} + \sum_{h=1}^{\infty} \sqrt{2} \mathbf{V}_{h} \sin(h\omega_{0}t + \theta_{h})$$

$$(t) = \mathbf{I}_{dc} + \sum_{h=1}^{\infty} \sqrt{2} \mathbf{V}_{h} \sin(h\omega_{0}t + \delta_{h})$$

$$(t) = \mathbf{I}_{dc} + \sum_{h=1}^{\infty} \sqrt{2} \mathbf{V}_{h} \sin(h\omega_{0}t + \delta_{h})$$

Harmonic Sources – 6-pulse rectifier e.g. Variable Speed Drives or Medium Frequency Furnaces

h=harmonic; p=pulse number; m= 1,2,3 ,... ; f_N = system frequency ;

* for smoothed d.c. only

 ϕ = phase displacement between current and voltage; α = converters firing angle

Harmonic Sources – 12-pulse rectifier e.g. Variable Speed Drives or Medium Frequency Furnaces

h=harmonic; p=pulse number; m= 1,2,3 ,... ; f_N= system frequency; * for smoothed d.c. only

INTRODUCTION

Undesirable Effects of Harmonics

- Overheating resulting in need of derating of the equipment.

Potential for problems with excessive ground currents (stray voltages, telephone interference, relay mis-operation) on systems with single phase loads.
Capacitors for power factor correction and cable

systems aggravate the problem by causing resonances.

Are harmonic levels increasing?

Changing system characteristics More power factor correction More cable Changing load More harmonic generation Less damping Other characteristics

IEEE Standard 519-1992- Current Distortion Limits Odd harmonics Distortion limits (%I,) for individual customers

Base voltage	I _{SC} /IL	h<11	11≤h<17	17≤h<23	23≤h<35	35≤ h
Limit (kV)						
	<20	4.0	2.0	1.5	0.6	0.3
0.12 – 69	20-50	7.0	3.5	2.5	1.0	0.5
	50-100	10.0	4.5	4.0	1.5	0.7
	100-1000	12.0	5.5	5.0	2.0	1.0
	>1000	15.0	7.0	6.0	2.5	1.4
69.001 – 161	<20	2.0	1.0	0.75	0.3	0.15
	20-50	3.5	1.75	1.25	0.5	0.25
	50-100	5.0	2.25	2.0	0.75	0.35
	100-1000	6.0	2.75	2.5	1.0	0.5
	>1000	7.5	3.5	3.0	1.25	0.7
> 161	<50	2.0	1.0	0.75	0.3	0.15
	≥50	3.0	1.5	1.15	0.45	0.22

The limits applicable for normal conditions For shorter periods (e.g. startup) limits may be exceeded by 50%

Table	11-1-Voltage Distortion Limits

Bus Voltage at PCC	Individual Voltage Distortion (%)	Total Voltage Distortion THD (%)
69 kV and below	3.0	5.0
69.001 kV through 161 kV	1.5	2.5
161.001 kV and above	1.0	1.5

NOTE — High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will attenuate by the time it is tapped for a user.

Even harmonics are limited to 25% of the odd harmonic limits

The limits applicable for normal conditions

For shorter periods (e.g. startup) limits may be exceeded by 50%

Tables applicable for 6-pulse convertors

For higher pulse number (q), limits may be increased by a factor of sqrt(q/6) provided non-characteristic harmonics are less than 25% of the specified limit.

PRC-PQG-01/1998: PEA's Regulation on the Power Network System Interconnection code B.E.2559(2016) Current Distortion Limits at point of common coupling

Base voltage limit	MVAsc**	Current Distortion Limits (A rms)																	
PCC Voltage (kV)	Base	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0.400	10	48	34	22	56	11	40	9	8	7	19	6	16	5	5	5	6	4	6
11 and 12	100	13	8	6	10	4	8	3	3	3	7	2	6	2	2	2	2	1	1
22, 24 and 33	500	11	7	5	9	4	6	3	2	2	6	2	5	2	1	1	2	1	1
69	500	8.5	6	4.3	7.3	3.3	4.9	2.3	1.6	1.6	4.9	1.6	4.3	1.6	1	1	1.6	1	1
115 and above	1,000	5	4	3	4	2	3	1	1	1	3	1	3	1	1	1	1	1	1

 $MVA_{SC1} \neq MVA_{SC-BASE}$

Where; I_h = Harmonic Current (A) h order that is allowed to flow in the system when MVA_{sc} = MVA_{sc1} I_{hp} = Harmonic Current (A) h order in table 1

 MVA_{sc1} = Minimum MVA_{sc} at PCC

 $MVA_{sc-Base} = Base MVA_{sc}$ for harmonic current from table 1

Devices for Controlling Harmonic Distortion

Chokes for ASD applications Zig-zag transformers Passive Filters Active filters

Shunt Passive Filter Configurations

Effect of Notch Filter on the Frequency Response Characteristics

Particle Services Compensation

Harmonic voltage detection with instantaneous power theory method (PQ)

Harmonic voltage detection with instantaneous power theory method (PQ)

Hysteresis voltage control

The hysteresis voltage control conditions:

Case 1: $V_c \le V_{low}$

 Switch S close circuit (dc+V) and switch S' open circuit

Case 2: $V_c \ge V_{up}$

 Switch S open circuit and switch S' close circuit (dc-V)

Case 3: $V_{low} < V_c < V_{up}$

• Switch S and S' does not change status

@ APF Model

The series active power filter is structured as a voltage source inverter circuit, uses IGBT as a power electronic switch.

And the **AC side of the circuit** is connected to a three-phase current source at the PCC point through it filter capacitors (*Cf*) and filter inductance (*Lf*) in all three phases. With the inverter circuit output voltage (*Vtu, Vtv, Vtw*) that directly affecting the voltage compensation (*Vfu, Vfv, Vfw*). **In order to** control such the voltages to have the similar wave form to the reference voltage (*Vcu,ref,, Vcv,ref,, Vcw,ref*) obtained by calculationg the harmonic voltage by PQ method.

Simulation results

Brightness for 🦾 🌈 Quality สว่ามทั่วทิศ สร้ามคุณภาพชีวิตทั่วไทย

-`•

-`@`-

Thank you for your attention

panaya.sud@pea.co.th

Copyright © 2020 Provincial Electricity Authority

₫⁄