

Harmonic and Energy Saving Solutions

Passive Harmonic Solution for VFD's

- Introducing Lineator AUHF

Talayeh Ameri, Sales and Applications Support Engineer

MIRUS Is Harmonic Mitigation

MIRUS International Inc. designs and develops world-class power quality improvement products for mission critical operations. Our solutions minimize disruption to power supply, improve reliability and adhere to the strictest regulatory requirements while saving energy and reducing operating costs.

Harmonics are a Massive Pain for Oil & Gas, Marine, HVAC, Water/Wastewater, Data Centers and Industrial and Commercial Facilities

- Harmonic disturbances damage expensive equipment, cause failure, and add expense via maintenance, replacement, energy consumption, etc.
- A solution is needed to mitigate disruptions, high costs and associated risks.
- A proactive approach helps solve harmonic issues and prevent future problems.

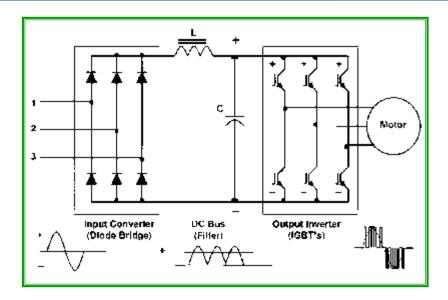
Our Solution in Action

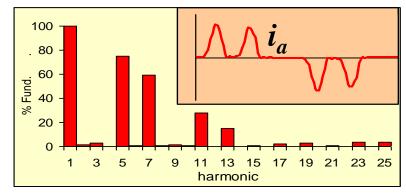
Our Solution in Action

6- Pulse Rectifier and Harmonics

For simple diode bridge rectifiers:

$$h = np \pm 1$$
 $I_h = \frac{I}{h}$


h = harmonic number

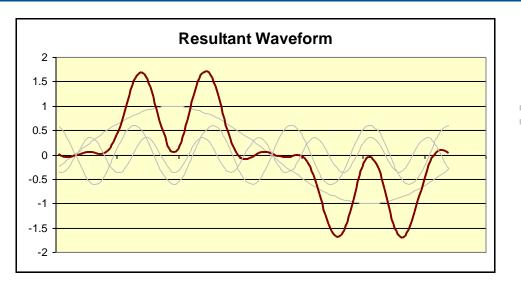

p = # of pulses in rectification scheme

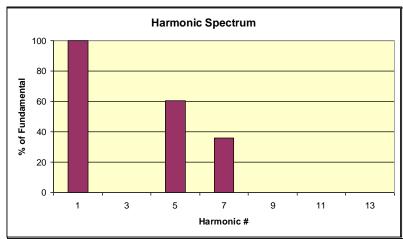
n = any integer (1, 2, 3, etc.)

I_h = magnitude of harmonic current (addition of DC bus cap increases I_h)

When,
$$p = 6$$

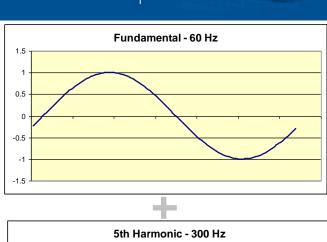
 $h = --5,7,--,11,13,--,17,19...$

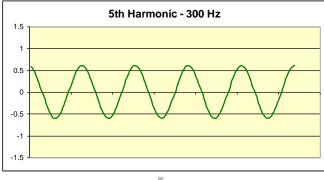


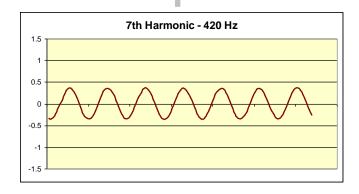


Current Waveform and Spectrum

Harmonics – Components of a Distorted Waveform

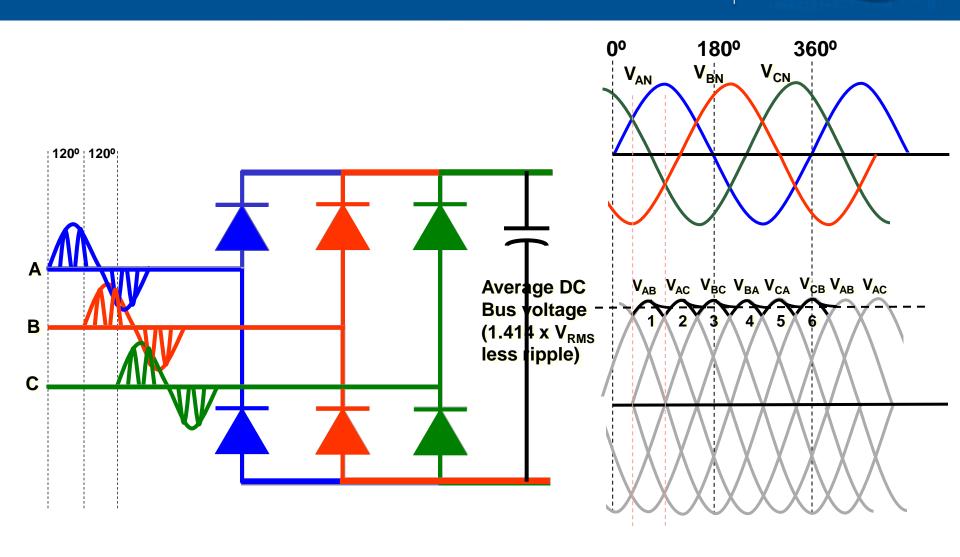






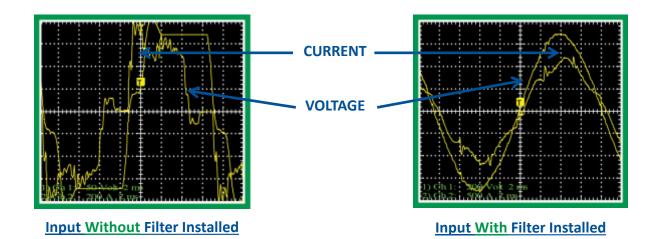
Fourier Series

 $f(t) = A_0 + A_1 \sin(wt + \theta_1) + A_2 \sin(2wt + \theta_2) + A_3 \sin(3wt + \theta_3) \dots$



3-Phase Rectifier Operation: 6-Pulse

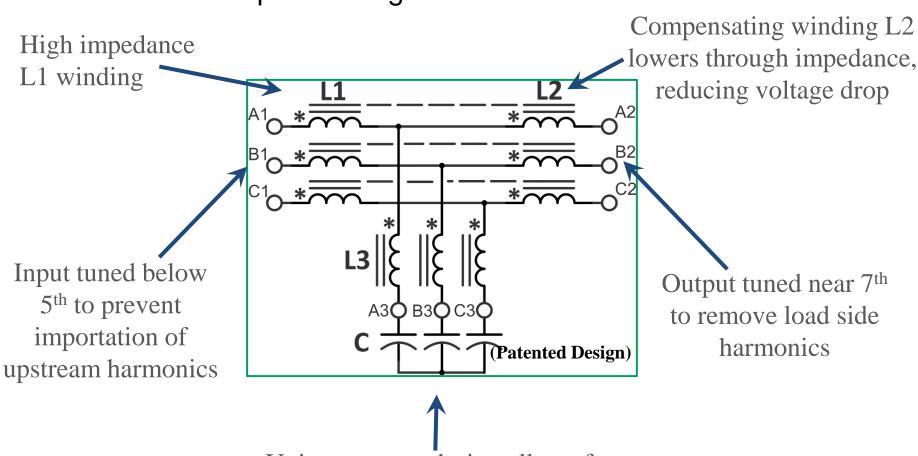
What Problems can VFD Harmonics Create?


- Distortion of supply voltage causing premature failure or misoperation of connected equipment
- Over heating of distribution equipment such as cables, transformers and generators
- False operation of circuit breakers and other protection devices
- Over heating of motors and other connected equipment
- Low power factor resulting in electrical bill penalties and requiring transformer kVA upsizing
- Failure of PF correction capacitors
- Metering errors (not a problem with digital meters)
- Voltage regulation problems on generators
- Power system resonance which can amplify the problem

LINEATOR™ Advanced Universal Harmonic Filter (AUHF)

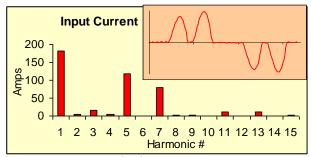
- Input harmonic filter for VSDs
- 18-pulse performance with 6-pulse VSD
- Meets IEEE std 519 harmonic limits
- Revolutionary reactor design

- Near unity power factor
- Generator compatibility
- Extremely high efficiency
- Sizes up to 3500HP (2600kW)

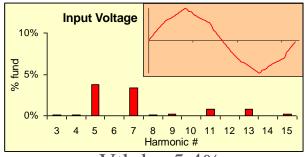


Lineator Internal Connection Diagram

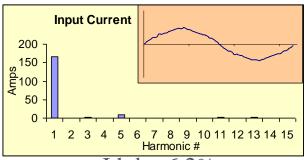
Multiple windings on a common core



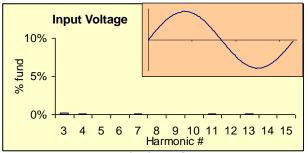
Unique reactor design allows for smaller cap bank to reduce voltage © 2015 Mirus International | All Rights Reserved boost and reactive power at no load


Lineator Performance on 150 HP (110 kW) PWM VFD

Without Harmonic Treatment



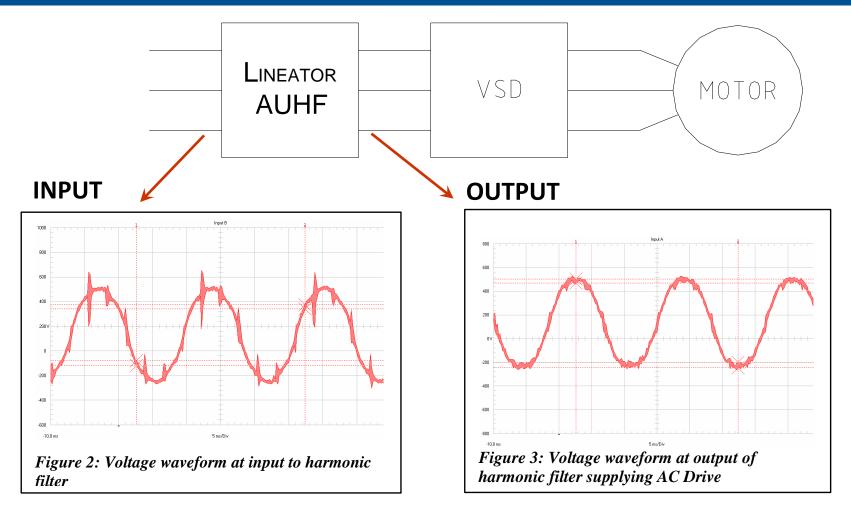
Ithd = 79%



Vthd = 5.4%

With LINEATOR

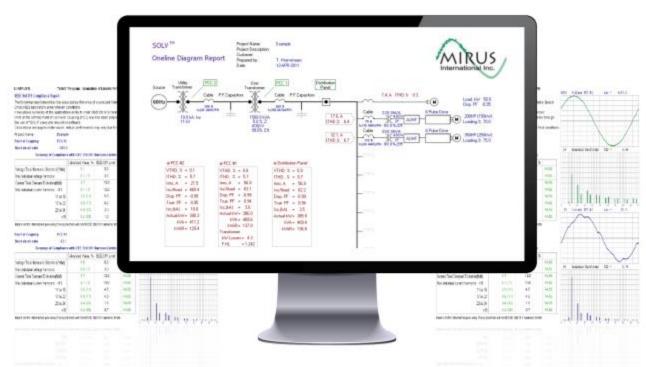
Ithd = 6.2%



Vthd = 0.6%

	Current Harmonics (Amps)																	
	RI	MS	5	th	7	th	11	th	13	th	Itl	nd	It	dd	K-fa	ctor	P	F
Load	w/o	With	w/o	With	w/o	With	w/o	With	w/o	With	w/o	With	w/o	With	w/o	With	w/o	With
Full	233	168	118	9.0	80	0.6	12	2.2	12	1.5	79%	6.2%	79%	6.2%	15	1.5	75	1.00
75%	187	130	96	7.7	70	0.6	15	1.5	7	1.4	86%	7.0%	65%	5.3%	17	1.6	73	+ .99
50%	134	89	69	6.9	54	0.3	17	1.2	5	1.0	95%	9.0%	48%	4.5%	20	2.0	69	+ .95
25%	67	46	33	4.2	29	0.2	14	8.0	9	1.0	120%	11%	30%	2.8%	29	2.5	58	+ .83

Lineator Provides Protection Against Line-Side Transients



Voltage Notching Caused by DC Drives on Off-shore Oil Platform

Notches Dramatically reduced on Output of Lineator AUHF

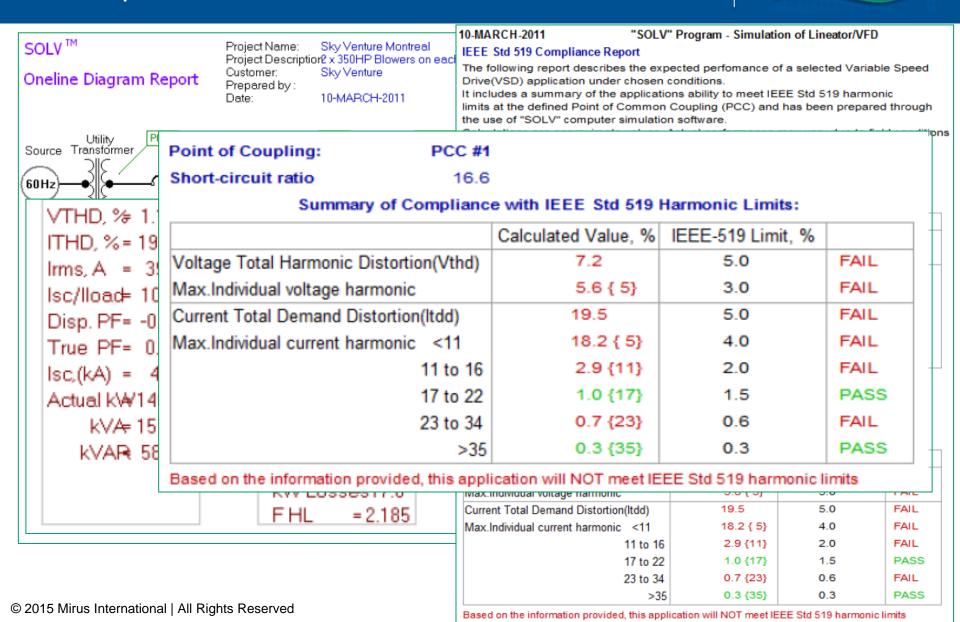
SOLV Computer Simulation Software

- Calculates current and voltage distortion levels by simulating Variable Speed Drive (VSD) applications with and without harmonic mitigation (Lineator AUHF)
- Comparison to IEEE Std519 harmonic limits
- Performs energy savings analysis
- Allows for voltage imbalance and background voltage distortion

Case Study - SkyVenture Free-fall Simulator

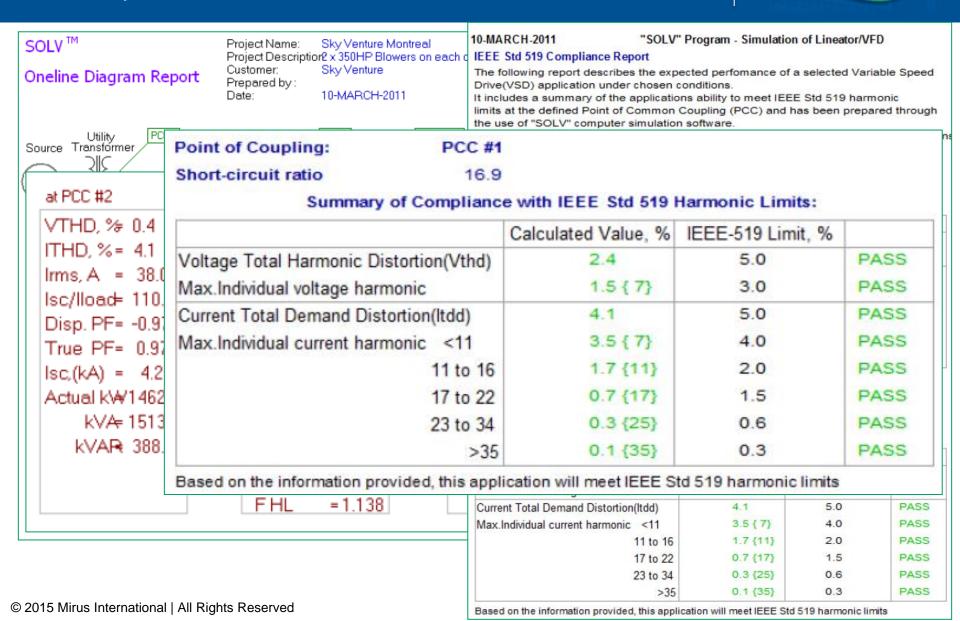
Wind tunnel powered by large blowers provides novice and expert thrill-seekers the experience of free-fall

Challenge:


- 4 x 350HP VFD's used to achieve required wind speeds
- Local Utility required evidence that IEEE Std 519 harmonic limits would be met
- Energy savings also considered to be very important

Solution:

- Computer simulation was used to demonstrate:
 - Line reactors alone would not meet limits
 - Passive harmonic filter would meet limits
 - Significant energy savings when compared to 18-Pulse


SkyVenture Free-fall Simulator — Montreal Computer Simulation with AC Line Reactor

SkyVenture Free-fall Simulator – Montreal Computer Simulation with Lineator AUHF

SkyVenture Free-fall Simulator - Montreal

Energy Savings Analysis: 18-Pulse VFD vs Passive Harmonic Filter

- Operating Conditions:
 - 10 hrs/day, 364 days/yr
 - 80% load
 - \$0.06 / kWhr
- Estimated energy savings at Utility Supply:
 - 47,334 kWhr/yr
 - \$2,840 /yr

SOLV Program - Simulation of Lineator/VFD

Comparison & Energy Analysis Report

te

Project Name: Sky Venture Montreal

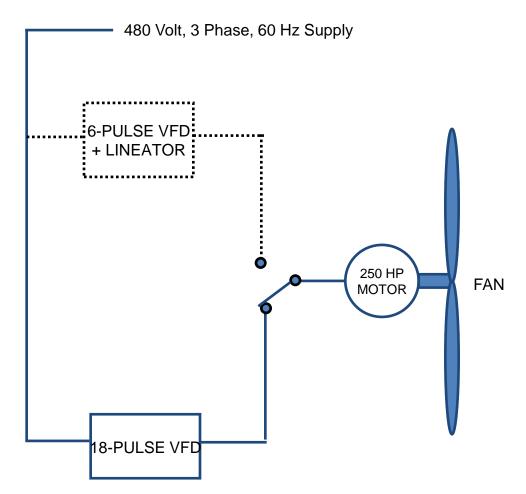
Project Description: 2 x 350HP Blowers on each of 2 sides

10-MARCH-2011

Customer: Sky Venture

Prepared by:

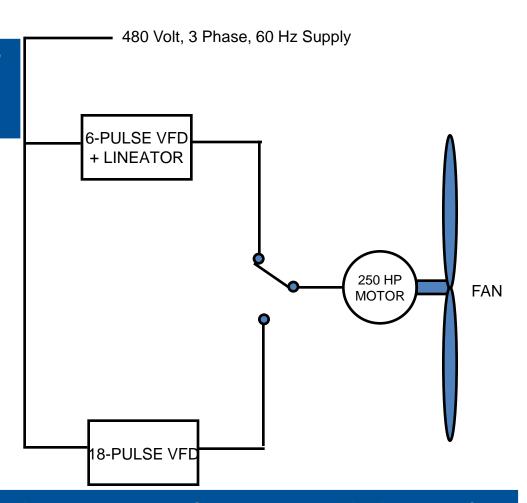
		Scenario A	Scenario B	Difference
Operating I	nfo	PHF	18-P	
Curr	rency	CAD	CAD	
Run	time (hrs/yr)	3640	3640	
Elec	tricity Consumption Rate (\$/kWhr)	0.060	0.060	
Elec	tricity Demand (\$/kW/month)	0.000	0.000	
Source		System	System	
	em Frequency (Hz)	60	60	
Utility		Transformer	Transformer	
•	(kVA)	5000.0	5000.0	
	• •	3.0	3.0	
	edance (Z%)	3.0	3.0	
	t Level (MVA)			
	rt-Circuit Current (kA)		22222	
Sec	ondary Voltage (V)	23000.	23000.	
PCC #2				
Harr	monic Voltage Distortion (%)	0.3	0.3	-0.0
	monic Current Distortion (%)	5.0	6.3	1.3
Tota	l Current (Arms)	31.2	32.1	8.0
Disp	lacement PF	-0.980	-0.975	0.005
True	PF	0.974	0.974	-0.000
kVA		1245.6	1278.0	32.5
kVA	R	184.3	289.3	105.0
Activ	ve kW	1231.9	1244.9	13.0
Ene	rgy Consumption (kWhr/yr)	4483960	4531294	47334
Ene	rgy Cost (\$/yr)	269037	271877	2840
User Trans	former			
Size	(kVA)	1500.0	1500.0	
	edance (Z%)	5.00	5.00	
	t Level (MVA)			
	rt-Circuit Current (kA)			
	ondary Voltage (V)	600.	600.	
	Losses	13.6	13.7	0.1
	monic Loss Factor (FHL)	1.164	1.139	-0.025


SkyVenture Free-fall Simulator - Orlando

Energy Savings Analysis: 18-Pulse VFD vs Lineator AUHF

Drive (Hz)	Fan (RPM)	18-pulse (kW)
55.92	818	152.47
60	889	190.03

SkyVenture Free-fall Simulator - Orlando



Energy Savings Analysis: 18-Pulse VFD vs Passive Harmonic Filter

KW SAVED WITH 6-PULSE VFD + LINEATOR

at <u>60 HZ</u>: 6.89kW at <u>55 HZ</u>: 9.2kW

Drive (Hz)	Fan (RPM)	18-pulse (kW)	6-pulse VFD + Lineator (kW)
55.92	818	152.47	143.27
60	889	190.03	183.14

6-PULSE DRIVE + LINEATOR saved 3.5% to 6% of energy needed to run fan

Case Study: Savings through Harmonic Mitigation

American Pipeline company reduced fuel, emissions and generator size by applying harmonic mitigation on a 200HP VFD pump application

Challenge:

- Failures and operational problems required that the supply generator be increased from 176kW to 500kW
- Fuel consumption and emissions increased due to harmonics and inefficient generator operation
- Voltage distortion high even on 500kW generator

	No Harmonic Mitigation	With 3% AC Reactor	With AUHF
VTHD	7.6%	5.4%	1.7%
ITHD	44.7%	32.0%	6.6%
Current (Amp)	198.8	191.5	180.3
Real Power (kW)	147.2	146.9	148.3

Computer Simulation of 500 kW Generator supplying 200HP Pump with VFD and Various Harmonic Treatments

Case Study: Savings through Harmonic Mitigation

American Pipeline company reduced fuel, emissions and generator size by applying harmonic mitigation on a 200HP VFD pump application

Solution:

- Lineator (AUHF)
 Harmonic Filter installed
- VTHD reduced to < 3%
 ITHD reduced to < 6%
- kW, fuel consumption and emissions reduced
- Allowed for significant downsizing of generator
- Eliminated VFD failures

•	•	• • •	
	500 kW (with AC Reactor)	500 kW (with AUHF)	300 kW (with AUHF)
Load (kW)	137.5	111.5	117.6
Load %	27.4	22.2	39.2
Fuel Consumption at % Load (gal/hr)	11.8	10.1	7.3
Fuel Consumption at 24 hrs/day (gal/mo)	8,496	7,272	5,256
Fuel Cost (USD/mo)	\$32,285	\$27,634	\$19,973
Fuel Savings (USD/mo)	N/A	\$4,651	\$12,312
% Savings	N/A	14.4%	38.1%
Emissions (kgCO ₂ /hr)	120	103	74
Monthly Emissions (kgCO ₂ /mo)	86,400	74,160	53,280
Monthly Emissions Reduction (kgCO ₂ /mo)	N/A	12,240	33,120

China Operations

- Wholly Foreign Owned Enterprise (WFOE) located in Suzhou
- Acquired in 2014
- Modern 4,700 m² (50,000 sq ft) facility
- Production capacity over 1000 units/mo in small/medium sizes

China Operations

Thank you.

MIRUS International Inc. 31 Sun Pac Blvd. Brampton, Ontario, Canada L6S 5P6

MIRUS Electromagnetic Equipment (Suzhou) Co., Ltd. No. 5 building, EPZ Sub-industry Park, 666 Jianlin Road, Suzhou New District, Suzhou, Jiangsu, China 215011

Tel: (905) 494-1120 Fax: (905) 494-1140

Toll Free: 1-888 TO MIRUS (1-888-866-4787)

Website: www.mirusinternational.com E-mail: mirus@mirusinternational.com

