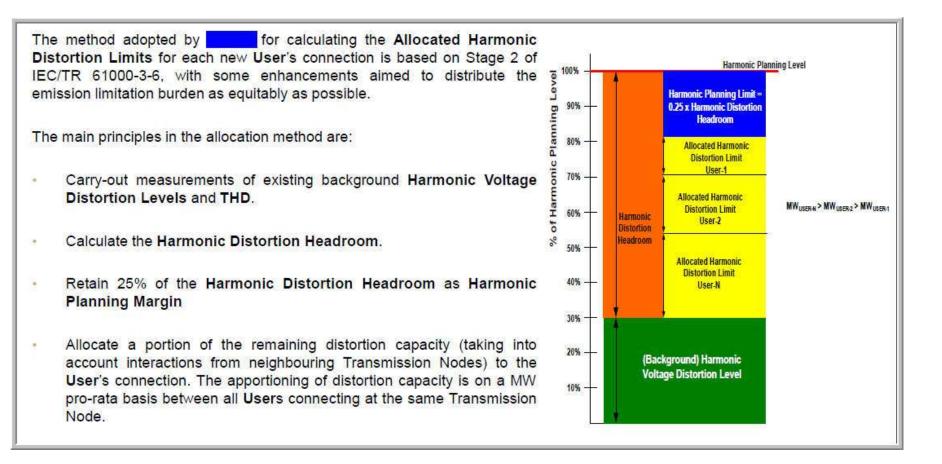


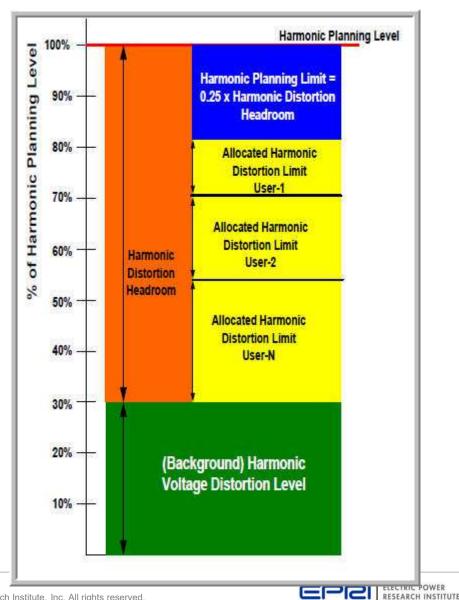
Developing an Improved Strategy for Valuing PQ


Bill Howe, PE Program Manager, Power Quality

17th Annual PQSynergyTM International Conference and Exhibition

> Chiang Rai, Thailand 24 – 26 April 2017

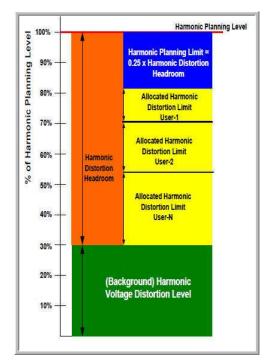
Today's Approach to "Managing" PQ


- Maximum allowable limits
- Allocation to existing loads

Today's Approach to "Managing" PQ What's missing from this picture?

- Planning levels for most PQ phenomena are based on avoiding equipment damage and/or customer complaints
- GOAL of the planning process is to allocate PQ to existing or planned loads
- Missing:
 - Goal of maintaining nearperfect PQ
 - Opportunity for continuous correction, load-by-load
 - Economic value of good PQ

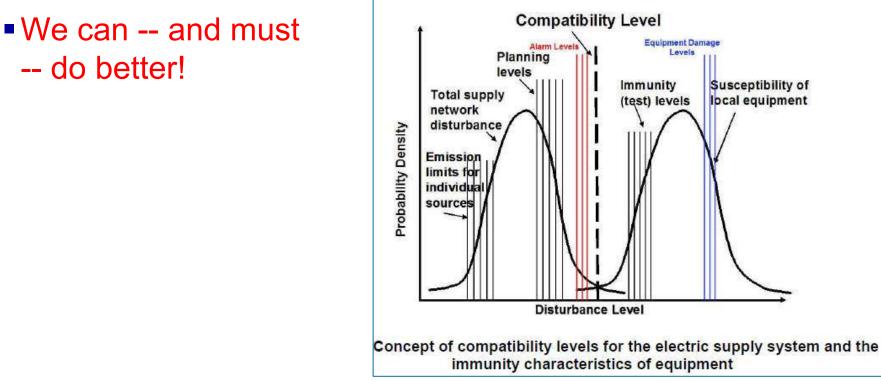
Today's Approach to "Managing" PQ Some PQ thresholds


Harmonics (IEEE 519-2014)

Bus voltage Vat PCC	Individual harmonic (%)	Total harmonic distortion THD (%)	
$V \le 1.0 \text{ kV}$	5.0	8.0	
$1 \text{ kV} \le V \le 69 \text{ kV}$	3.0	5.0	
$69 \text{ kV} \le V \le 161 \text{ kV}$	1.5	2.5	
161 kV $\leq V$	1.0	1.5ª	

Flicker (IEC 61000-3-7)

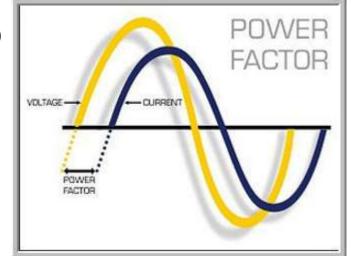
Table 2 – Indicative values of planning levels for P_{st} and P_{lt} in MV, HV and EHV power systems


	Planning levels	
	MV	HV-EHV
Pst	0,9	0,8
Plt	0,7	0,6

Today's Approach to "Managing" PQ Illustration of thresholds

- Threshold-based management of PQ can operate at different levels
- Goal is to maximize connected load up to the maximum allowable contamination

Source: IEEE 1250

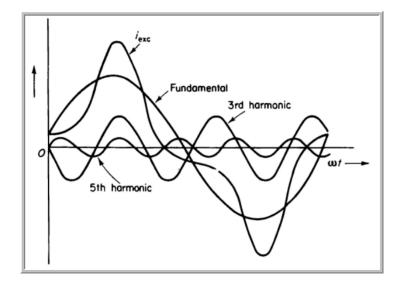

-- do better!

Displacement Power Factor An example of where we got it right (mostly)

- Recognized Costs Resulting from Less-than-perfect PF
 - Additional generation capacity and operational costs
 - Lost system capacity in transformers, conductors, etc.
 - Additional I²R losses
 - Costs for utility-side mitigation

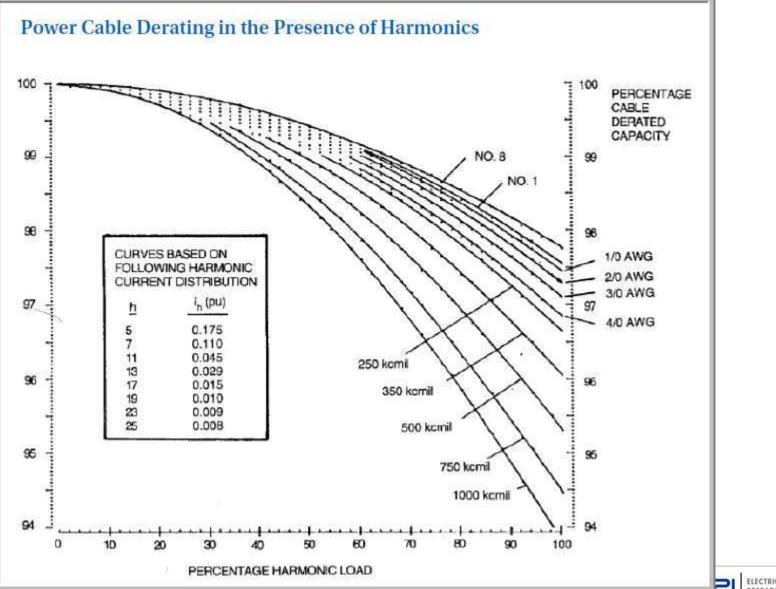
Management Strategy

- Performance goal of near perfect PF (1.0)
- Expectation that each connecting load will be responsible for
- Management Implementation
 - Utility-side correction
 - PF penalties and KVA tariffs

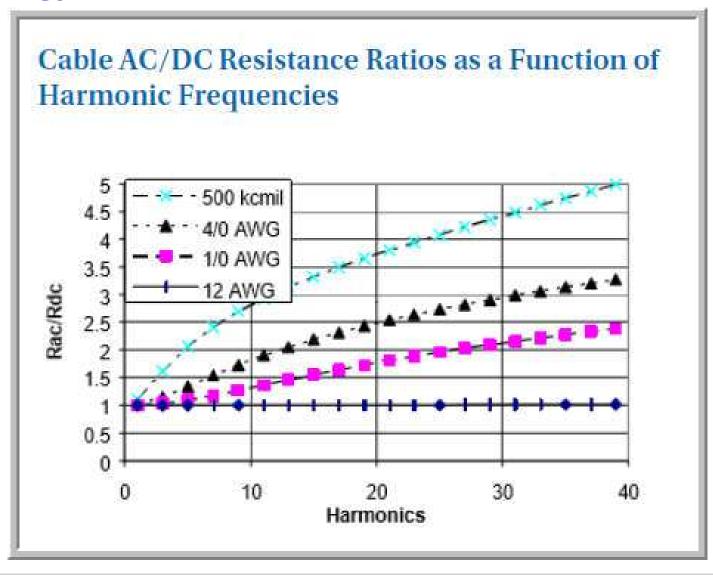

Developing a New Model for Management of PQ Incorporating Economical Drivers - Harmonics

Hard costs due to harmonics

- Additional generation capacity and operational costs
- Additional I²R losses in equipment and wiring
- Damage due to harmonic resonance


Soft costs due to harmonics

- Equipment heating / shortened life
- Increased chance of malfunction
- Lost system capacity
- Others



Economic Factors for Harmonics Lost System Capacity - Conductors

Economic Factors for Harmonics Energy Losses due to Harmonics - Conductors

Economic Factors for Harmonics Hydro Quebec Analysis (2000)

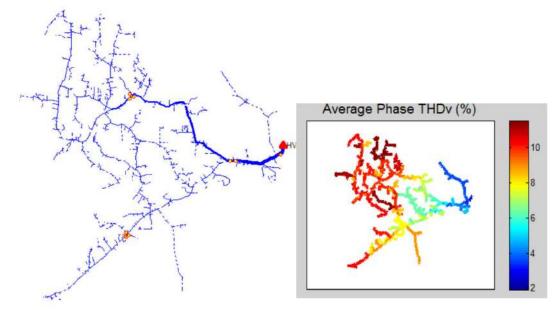
 Grid-wide analysis of harmonics based on IEC levels

 Estimated cost of US\$43M per year

	Harmonic Levels of 50% of IEC Limits	Harmonic Levels of 100% of IEC Limits	Harmonic Levels of 150% of IEC Limits
LV lines	3078	12,311	27,701
MV lines	2330	9320	20,970
Transformers	975	3899	8774
Capacitors	137	548	1233
Total	6491	26,078	58,678

Estimated Annual Cost for Distribution System Power Losses Produced by Harmonics (US\$1000)

	Harmonic Levels of 50% of IEC Limits	Harmonic Levels of 100% of IEC Limits	Harmonic Levels of 150% of IEC Limits
LV lines	\$2,292K	\$9,167K	\$20,626K
MV lines	\$1,735K	\$6,940K	\$15,614K
Transformers	\$726K	\$2,903K	\$6,533K
Capacitors	\$102K	\$408K	\$918K
Total	\$4,833K	\$19,418K	\$43,692K



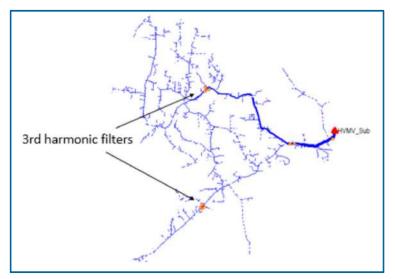
EPRI Scenario Analysis of Cost of Harmonics

V-thd at the substation: ~2%

V-thd peaks ~10%

Harmonic Order	Harmonic Magnitude (% of Fundamental)			
	Background Voltage	Base Harmonic Load Current	High Harmonic Load Current	
3	1.3	8.6	14	
5	1.5	4.7	7.5	
7	0.4	2.9	4.5	
9	0.2	2.9	4.5	
11	0.1	1.1	1.5	
13	0.1	0.9	1.4	

EPRI Scenario Analysis of Cost of Harmonics Base Case – No filters


Percent increase in losses due to harmonics: 2.6%

Component	Losses (kW)			Percent Increase due to Harmonics
	Fundamental	Harmonics	Combined	
Peak Hour Analysis				
Lines I ² R losses	1034.4	29.2	1063.6	2.8
Transformers I ² R losses	118.8	1.5	120.3	1.3
Transformers no-load losses	56.8		56.8	
Transformer eddy losses	7.1	0.9	8.0	12.7
Capacitor losses		0.5	0.5	\frown
Total losses	1217.1	32.7	1249.2	(2.64)
Annual Analysis				
Losses (kWh)	3,419,784	84,045	3,503,829	
Cost (\$1000)	342	8.4	350.4	
Total losses (% of energy)	11.30	0.3	11.6	

EPRI Scenario Analysis of Cost of Harmonics Base Case – 3rd Harmonic Filters Added

- Losses due to harmonics are 1.1% after vs. 2.6% before
- Economic payback based only on these losses: ~11 years

Component	Losses (kW)			% Increase due to Harmonics
	Fundamental	Harmonics	Combined	
Peak Hour Analysis				
Lines I ² R losses	1034.4	11.4	1045.8	1.1
Transformers I ² R losses	118.8	0.8	119.6	0.7
Transformer no-load losses	56.8		56.8	
Transformer eddy losses	7.1	0.5	7.6	7
Capacitors losses		0.2	0.2	
Total losses	1217.1	12.9	1230	(1.06)
Annual Analysis				
Losses (kWh)	3,419,784	33,794	3,502,472	
Cost (\$1000)	342	3.4	345.5	
Total losses (% of energy)	11.3	0.12	11.59	

Economic Model for PQ Future Work

- More sophisticated models of the economic impact of harmonics
 - Additional generation capacity and operational costs
 - Lost system capacity in transformers, conductors, etc.
- Incorporation of other PQ phenomena
 - Flicker
 - Voltage Unbalance
 - Transients
 - Etc.

Together...Shaping the Future of Electricity

