CONSIDERATIONS AS TO: WHAT'S GOING TO HAPPEN WITH ALL THE DATA FROM THE SMART GRID?

Wieslaw Jerry Olechiw VP of International Sales and System Sales

Dranetz and Electrotek Concepts

SMART GRID CONSIDERATIONS; WHAT ARE YOUR SMART GRID PLAN?

- The Smart Grid includes a very wide range of technologies and new initiatives.
 - Renewables Wind, solar, etc.
 - Storage Capacity pumped water storage, new battery technologies.
 - Electric Vehicles will create new loads at different times of day and in residential, commercial and industrial locations.
 - Smart metering for all residential consumers. Utilities begin to monitor the use of energy and appliances in your home.
 - Communication and data storage protocols IEC61850, Common Information Model, Comtrade, PQDIF and more.
 - A "self healing" highly reliable power grid. How do we get there?

WHERE IS THE DATA COMING FROM?

A Waterfall of Data

What devices are providing data?

- SCADA Systems
- Operating Logs
- Microprocessor Relays
- Digital Fault Recorders
- PQ Monitors
- Demand and Energy Meters
- Recloser Controls
- Customer Smart Meters
- 61850 Compliant Devices
- Outage Management Systems

WHERE IS ALL THIS DATA BEEN GOING? WHERE WILL IT GO IN THE FUTURE.

- Existing Infrastructure
 - SCADA
 - Demand and Energy Meters
 - Digital Fault Recorders and Microprocessor Relays
 - Some PQ Meters
 - Most often Data is being stored in separate databases, and is being managed and utilized by different software packages. The data is not integrated into one database and analytics are most often being performed off-line and not correlations between different types of data are being made.

WHERE WILL SMART GRID DATA GO IN THE FUTURE?

- The industry trend that we seeing is the acquisition of Historian Database Systems.
- Where all of the data for the complete grid operations and business systems is put into a single database.

THE DEFINITION OF A HISTORIAN DATABASE

Historian

- A historian is a type of database designed to archive automation and process data. Historians are designed to store high frequency data and data collecting on a regular basis. Historians are used to troubleshoot processes, optimize manufacturing, store data for regulatory compliance, etc. Historians are not designed to store transactional or relational data – this is the role of a relational database. Common historian's include OSIsoft PI and eDNA InStep
- http://www.abb.com/industries/ap/db0003db004333/c125739a0067cb49c1257026003c54b c.aspx

HISTORIAN DATABASE

The Road to the Smart Grid – ODM Operational Data Manager

PI DATA INTEGRATION _ 8 × 🚰 http://intapps9.coned.com/DIS/Scripts/Manhattan.aspx - Microsoft Internet Explorer File Edit View Favorites Tools Help ť٥ 2 🛛 • 🚵 🏱 Favorites 🛛 🧭 (× Search W -Back 👻 🔁 Go • Address 😸 http://intapps9.coned.com/DIS/Scripts/Manhattan.aspx 2 Electric Distribution Information System (DIS) Cust. Count Key Magnify: .8x 💌 Mn Load: 2891 MW System Load: Actual:6920 MW Forecast:7950 MW Screen Refreshed: 9/11/2009 8:15:14 AM Volt Norm 📑 High At Central Park: Temp:(Dry Bulb): 56 (Wet Bulb):55 Feels Like: 56 Temperature Variable: 65 VLT: Low OK ABOVE NORM RATING SUSPECT Feeder Key: OVER 90% EMERG RATING ABOVE EMERG RATING OUT OF SERVICE Network Key: ALL CLOSED 1 OUT 2 OUT 3 OUT 4+ OUT Network Load Key (% of Forecasted Summer Peak): BELOW 90 90 to 100 ABOVE 100 9 of 642 network feeders out of service Manhattan Load:2891 MW Data Extracted: 9/11/2009 8:15:11 AM 1M-Washington Hts 102MW 1 of 20 54 2M-Harlem 0? of 28 99MW 32 16 43 3M-Yorkville 0 of 29 155MW 40 55 56 68 69 4M-Grand Central 0 of 24 146MW 57 78 80 86 99 75 98MW 5M-Times Square 0 of 16 80 95 6M-Madison Square 0 of 24 126MW 21 PI Tag 0 of 26 55 S 7M-Cooper Square 116MW 20 **Bkr Trip 8M-City Hall** 0 of 23 107MW 42 55 **9M-Hunter** 50MW 0 of 12 21 **10M-Sheridan Square** 0 of 16 92MW 01 14 15 16 12 13 11M-Plaza 0? of 22 53 54 55 56 57 58 59 60 61 62 106MW 41 52 12M-Empire 0 of 12 33MW 68 78 79 13M-Chelsea 0? of 27 125MW 41 54 55 56 14M-Randalls Island 0 of 6 18MW 80 81 82 83 84 85 15M-Cortlandt 0 of 12 29MW 01 02 03 04 05 06 07 08 09 10 11 12

WHAT ABOUT THAT OLDER DATA?

- Two possible approaches;
 - Translate the data into a different file format and merge into one Historian database
 - Federate the data as needed.
- A federated database system is a type of meta-database management system (DBMS), which transparently maps multiple autonomous database systems into a single federated database. The constituent databases are interconnected via a computer network and may be geographically decentralized. Since the constituent database systems remain autonomous, a federated database system is a contrastable alternative to the (sometimes daunting) task of merging several disparate databases. A federated database, or virtual database, is a composite of all constituent databases in a federated database system. There is no actual data integration in the constituent disparate databases as a result of data federation.

WHAT ABOUT THAT OLDER DATA?

- Data federation technology is software that provides an organization with the ability to aggregate data from disparate sources in a virtual database so it can be used for business intelligence (BI) or other analysis.
- The virtual database created by data federation technology doesn't contain the data itself. Instead, it contains information about the actual data and its location (see metadata). The actual data is left in place.
- This approach is especially useful if some of an organization's data is stored offsite by a thirdparty cloud service provider. It allows the person performing the analysis to aggregate and organize data quickly without having to request synchronization logic or copy the data until it's absolutely necessary.
- Data federation technology can be used in place of a data warehouse to save the cost of creating a permanent, physical relational database. It can also be used as an enhancement to add fields or attributes that are not supported by the data warehouse application programming interface (API).
- Making a single call to multiple data sources and then integrating and organizing the data in a middleware layer is also called data virtualization, enterprise information integration (EII) and information-as-a-service, depending on the vendor

NOW THAT WE HAVE THE DATA WHAT ARE WE GOING TO DO WITH IT?

USE IT!

SMART GRID CONSIDERATIONS; WHAT ARE YOUR SMART GRID PLAN?

- The Smart Grid includes a very wide range of technologies and new initiatives.
 - Renewables Wind, solar, etc.
 - Storage Capacity pumped water storage, new battery technologies.
 - Electric Vehicles will create new loads at different times of day and in residential, commercial and industrial locations.
 - Smart metering for all residential consumers. Utilities begin to monitor the use of energy and appliances in your home.
 - Communication and data storage protocols IEC61850, Common Information Model, Comtrade, PQDIF and more.
 - A "self healing" highly reliable power grid, how do we get there.

CHANGE THE PARADIGM

- Think of a Paradigm Shift as a change from one way of thinking to another. It's a revolution, a transformation, a sort of metamorphosis. It just does not happen, but rather it is driven by agents of change.
- The number one change is that now all the data is in one place, it can be shared across departments and it can be used to improve overall grid operations.

THE BASIC WAYS TO USE THE DATA

AN EXAMPLE OF BENCHMARKING

<u>1996-1997 and 2006-2007 Mean Voltage THD</u> Values Comparison All Sites

ANALYTICS

• **Analytics** is the discovery and communication of meaningful patterns in data. Especially valuable in areas rich with recorded information, analytics relies on the simultaneous application of statistics, computer programming and operations research to quantify performance. Analytics often favors data visualization to communicate insight.

EXAMPLE SINGLE-PHASE FAULT ON FEEDER

REACTANCE-TO-FAULT CALCULATIONS BY POVIEW SOFTWARE

ESTIMATED LOCATION OF FAULT BY MATCHING MEASURED REACTANCE TO REACTANCE PROVIDED BY POWER FLOW MODELING SOFTWARE

CRTFDeta	🖉 RTFDetail - Windows Internet Explorer											
PQ View 0.7469	v XTF	Banks Fee	ede:	r Factor	XTF 0.2241	Accuracy 5.00 %	Defaults	Set a	as Default	Recalculate		
9/9/2012	2 6:59:	01 PM Single-P	has	e Fault on	Phase A					SABIND, RTF U	ser	
Feeder	Feed	er:01X23	Ne	twork : R	iverdale					Print		
01M02		Structure				Location			Resistance	Reactance		
01M03	26	M23658	İ						0.0975	0.1479		
01M04	27	M23659							0.1027	0.1574		
01M07	28	M11873							0.107	0.1654		
01M14	29	<u>M11874</u>							0.1116	0.1741		
01M18	30	<u>M11877</u>							0.1169	0.1843		
01M50	31	<u>M11889</u>							0.1223	0.1925		
01M51	32	<u>M11891</u>							0.126	0.1982		
01M54	33	<u>M11893</u>							0.1299	0.2041		
01X22	34	M11894							0.1316	0.207		
01X23	35	M11897							0.1366	0.2165		
01X26	36	M11899							0.1408	0.2244		
01X28	37	M2504							0.1465	0.2352		
01X29	38	M11912							0.1507	0.2416		
01X32	39	<u>M11914</u>							0.1538	0.2476		
	40	<u>M4056</u>	_						0.179	0.2514		
	41	<u>M11921</u>							0.1571	0.2538		
	42	<u>M11923</u>							0.1604	0.26		
	43	<u>M11927</u>							0.1634	0.2658		
	44	<u>M911</u>							0.1922	0.2659	-	

ESTIMATED LOCATION OF FAULT

FEEDER FAULT WITH GE RELAY TARGETS

FAULT CURRENT VERSUS INRUSH

AUTOMATIC E-MAIL NOTIFICATIONS AVAILABLE FROM PQ MONITORING DATA

- Include hyperlinks to waveform and rms samples, relay targets and/or pickups that change, and breaker operation events
- E-Mail Notifications Available from Area Substation Monitors
 - Any Fault
 - Three-Phase Fault
 - Inrush Events
 - Subcycle Faults
 - Long Events
 - Voltage Sag/Swell Events
 - Overcurrent Events
 - Incipient Faults
- E-Mail Notifications Available from Transmission Feeders
 - Fault Events with Waveform Attachments

RESEARCH ON INCIPIENT FAULT LOCATION

AREA SUBSTATION VOLTAGE CONTROL

Area Substation Load versus Voltage Schedule

TOTAL 13KV BUS LOAD (Megawatts)	<u>13KV Feeder Bu</u>	is Volts
0 - 50	13,000	
51 - 100	13,100	
101 - 150	13,200	
151 - 200	13,300	
201 - 250	13,400	13.6-
251 - 300	13,500	-
Above 300	13,600	13.5
		≥13.4-

APPLICATION FOR ANALYZING SCADA ECC PI HISTORIAN AND POVIEW DATA SIMULTANEOUSLY

VOLTAGE DEVIATION CONTROL CHART

VOLTAGE REGULATION CONTROL WEEKLY REPORT

POWER FACTOR SUMMARY WEEKLY REPORT

0	2	, 1) -	(" -) ∓						Statio	nSPeC								-	= X
C	2	Home	Create Ext	ernal Data	Database	Tools													0
»	E																	_	5
																			~
		1														Corvico	Convico	Service	
	h		Station	Week	PF Min	PF Avg	PF Max	Weekday	Weekday	Weekday	Weekend	Weekend	Weekend	Leading PF	Leading PF	Hours Cap	Hours Cap	Hours Cap	
	F					-		PF Min	PF AVg	PF Max	PF Min	PF AVg	PF Max	Hours	Avg	1	2	3	
			East 29th Street	07/11/2011	83.63%	97.49%	99.94%	93.20%	97.89%	99.94%	83.63%	96.48%	99.17%	0.00%		74.26%	71.38%	37.55%	
			East 36th Street	07/11/2011	87.26%	96.65%	100.00%	87.26%	97.50%	100.00%	88.41%	94.59%	99.85%	1.39%	-99.82%	80.06%	57.24%	31.75%	
			East 40th Street 1	07/11/2011	89.74%	97.73%	100.00%	89.74%	97.62%	100.00%	0.00%	97.85%	100.00%	5.26%	-99.86%	31.85%	62.40%	94.59%	
			East 40th Street 2	07/11/2011	89.57%	96.90%	100.00%	89.87%	97.24%	100.00%	0.00%	95.99%	99.68%	40.28%	-99.58%	76.98%	62.75%	37.40%	
			East 63rd Street 1	07/11/2011	89.92%	96.44%	99.99%	89.92%	95.55%	99.80%	96.44%	98.66%	99.99%	0.00%		85.32%	75.15%	0.00%	
a l			East 63rd Street 2	07/11/2011	95.06%	98.09%	100.00%	95.06%	97.70%	100.00%	97.15%	99.16%	100.00%	5.85%	-99.98%	71.78%	0.00%	0.00%	
4			Hell Gate	07/11/2011	98.00%	99.55%	100.00%	98.00%	99.51%	100.00%	98.25%	99.63%	100.00%	12.60%	-99.85%	88.84%	90.87%	82.94%	
5			Murray Hill	07/11/2011	91.64%	94.84%	99.78%	91.73%	95.80%	99.78%	91.64%	92.44%	93.15%	0.00%		0.00%	0.00%	100.00%	
ati			Parkview	07/11/2011	93.48%	96.54%	99.46%	93.57%	96.97%	99.46%	93.48%	95.46%	99.06%	0.00%		100.00%	0.00%	0.00%	
jā,			Plymouth Street	07/11/2011	93.15%	97.13%	100.00%	93.15%	97.20%	100.00%	93.49%	96.96%	99.75%	4.71%	-99.93%	55.36%	54.27%	38.64%	
E E			Seaport 1	07/11/2011	91.60%	97.21%	100.00%	91.60%	97.18%	100.00%	92.55%	97.28%	99.41%	1.84%	-99.97%	89.29%	100.00%	100.00%	
1 ²	P		Seaport 2	07/11/2011	89.19%	96.20%	100.00%	89.19%	95.51%	100.00%	90.20%	97.34%	99.98%	24.11%	-99.71%	45.44%	20.29%	64.73%	
			Sherman Creek	07/11/2011	95.49%	99.21%	100.00%	97.82%	99.58%	100.00%	95.49%	98.20%	100.00%	7.59%	-99.98%	86.71%	89.19%	85.86%	
			Trade Center 1	07/11/2011	91.90%	95.09%	100.00%	91.90%	95.31%	100.00%	92.27%	94.78%	99.01%	32.24%	-96.77%	100.00%	100.00%	79.37%	
	10																		
	1																		
For	m Vie	2W															Num	Lock 🗔	
For	m Vie	200		j													Num	Lock 🖪	3

TAP CHANGER SUMMARY WEEKLY REPORT

	1	🚽 L) = (L =) =			Statio	onSPeC											- = X
)-	Home Create	External Data	Database Tools													0
»	(Penorte														- ~)
		-a stationspec weekij	y Reports													- 1	
		Select Report:	Tap Changer Summ	ary 🔽													āl
		Select Week	Select Station				Тар	Тар	Tap	Tee	Tee	T 1	T 0	T 0	T == 4	Tre	
		8/1/2011 7/25/2011	Granite Hill Grasslands		Station	Week	Range Min	Range Avg	Range Max	Min	Max	Ops	Ops	Ops	Ops	Ops	
		7/18/2011	Greenwood		East 29th Street	07/11/2011	0	0.07	4	-16	-5	130	128	124	135	0	
		7/11/2011	Harrison		East 36th Street	07/11/2011	0	0.46	2	-16	-7	93	89	87	87	0	
		6/27/2011	Jamaica		East 40th Street 1	07/11/2011	0	0.59	3	-14	-3	112	112	115	119	0	
		6/20/2011	Leonard Stree	t 1	East 40th Street 2	07/11/2011	0	1.06	7	-10	2	0					
e		6/13/2011	Leonard Stree	t2 _	East 63rd Street 1	07/11/2011	0	9.45	21	-14	16	0	213	159	0	165	
ar		6/6/2011	Millwood West	:	East 63rd Street 2	07/11/2011	1	8.02	17	-12	9	0					
-		5/30/2011	Mott Haven		Hell Gate	07/11/2011	0	2.50	13	-13	2	92	77	188	63	0	
.ē		5/23/2011	Murray Hill		Murray Hill	07/11/2011	0	1.16	3	-13	-6	81	88	88	288		
Jat		5/16/2011	Newcown		Parkview	07/11/2011	0	0.00	0	-15	-8	64	64	64	64		
vig		5/2/2011	Ossinning		Plymouth Street	07/11/2011	0	0.48	7	-15	2	137	129	136	131	0	
P Z		4/25/2011	Parkchester 1		Seaport 1	07/11/2011	1	4.59	6	-15	-1	114	100	107	114	0	
-		4/18/2011	Parkchester 2		Seaport 2	07/11/2011	0	3.97	6	-16	-5	0					
		4/11/2011	Parkview		Sherman Creek	07/11/2011	0	3.83	15	-14	1			75	41	44	
		4/4/2011	Pleasantville		Trade Center 1	07/11/2011	0	2.68	9	-16	-6	65	61	78	135		
		3/28/2011	Plymouth Stree	et													
			Seaport 1														
			Seaport 2														
			Sherman Cree	:k													
			Trade Center	1													•
Form	Vie	w													Num I	.ock	3 % .;

CAPACITOR ANALYSIS AT AREA SUBSTATIONS

SYNCHRONOUS CLOSING ASSESSMENT METHODS

 New module in testing to analyze how measured closing time was to the ideal closing time

Manhattan Station	Joslyn Banks
Avenue A	C3
Parkview	C1
Astor	C1A, C2, C3
Murray Hill	C3
Seaport No. 1	C1, C2, C3
Trade Center No. 1	C1, C2, C3

Staten Island Station	Joslyn Banks	Bronx/Westchester Station	Joslyn Banks
Woodrow	C1	Cedar Street	C1
		East 179 th Street	C1
		Millwood	C1
		Ossining	C1
		Pleasantville	C1
		White Plains	C1, C2, C3